期刊文献+

不确定下广义博弈强Berge均衡的存在性 被引量:5

Existence of Strong Berge Equilibrium for Generalized Non-cooperative Games under Uncertainty
原文传递
导出
摘要 本文基于不确定下的非合作博弈NS均衡给出了不确定下广义非合作博弈强Berge均衡与广义多目标弱Pareto强Berge均衡的定义,利用Fan-Glicksberg不动点定理证明了不确定下广义非合作博弈强Berge均衡与不确定下广义多目标弱Pareto强Berge均衡存在性定理. In this paper, on the basis of NS-equilibrium for non-cooperative games un- der uncertainty, the notions of strong Berge equilibrium for generalized non-cooperative games under uncertainty and weakly Pareto-strong Berge equilibrium for generalized non- cooperative multi-objective games under uncertainty are defined, and the existence theorem of generalized non-cooperative games under uncertainty and weakly Pareto-strong Berge generalized non-cooperative multi-objective games under uncertainty are also provided by using Fan-Glicksberg fixed point theorem.
出处 《应用数学学报》 CSCD 北大核心 2015年第2期200-211,共12页 Acta Mathematicae Applicatae Sinica
基金 国家自然科学基金(11161008) 教育部博士点基金(20115201110002)资助项目 贵州省科学技术基金([2013]2235)资助项目
关键词 非合作博弈 强Berge均衡 不动点 不确定性 cooperative game non-cooperative game existence fixed point theorem
作者简介 (E-mail:iamdengxicai@163.com) (E—mail:shwxiang@vip.163.com)
  • 相关文献

参考文献18

  • 1Nash J. Non-cooperative games. Annals of Mathematics, 1951, 54(5): 286-295.
  • 2Aumann J P. Acceptable points in general cooperative n-person games. Prinston: Prinston University Press, 1959.
  • 3Selten R. Reexamination of the perfenctness concept for equilibrium points in extensive games. In- ternational Journal of Game Theory, 1975, 4:25-55.
  • 4Myerson R B. Refinements of the Nash equilibrium concept. International Journal of Game Theory, 1978, 7:73-80.
  • 5Kreps D, Wilson R. Sequential equilibria. Econometrica, 1982, 50:863-894.
  • 6Larbani M, Nessah R. Sur 1' 6 quilibre fort selon Berge' Strong Berge equilibrium. RAIRO Operations Research, 2001, 35:439-451.
  • 7Berge C. Th6orie generale des jeux n-personnes. Paris: Gauthier Villars, 1957.
  • 8Abalo K Y, Kostreva M M. Equi-well-posed games. Journal of Optimization Theory and Applica- tions, 1996, 89:89-99.
  • 9Abalo K Y, Kostreva M M. Berge equilibrium: some recent results from fixed-point theorems. Applied Mathematics and Computational, 2005, 169:624-638.
  • 10Abalo K Y, Kostreva M M. Some existence theorems of Nash and Berge equilibria. Applied Mathe- matics Letters, 2004, 17: 569-573.

二级参考文献70

  • 1Nash J. Non-cooperative games[J]. Annals of Mathematics, 1951, 54(5): 286-295.
  • 2Schelling T. The strategy of conflict[M]. Cambridge: Harvard University Press, 1960.
  • 3Aumann R J. Subjectivity and correlation in randomized strategies[J]. J of Mathematical Economics, 1974, 1(3): 67- 96.
  • 4Selten R. Reexamination of the perfenctness concept for equilibrium points in extensive games[J]. Int J of Game Theory, 1975, 4(1): 25-55.
  • 5Harsanyi J C. Games with incomplete information played by Bayesian players[J]. Management Science, 1967, 14:159-182, 320-334, 486-502.
  • 6Berge C. Theorie generale des jeux on-personnes[M]. Pads: Gauthier Villars, 1957.
  • 7Aumann J P. Acceptable points in general cooperative n-person games[M]. Prinston: Prinston University Press,1959.
  • 8Larbani M, Nessah R. Sur l'equilibre fort selon Berge 'Strong Berge equilibrium' [J]. RAIRO Operations Research, 2001, 35(2): 439-451.
  • 9Zhukovskii V I. Linear quadratic differential games[M]. Naoukova Doumka: Kiev, 1994.
  • 10Larbani M, Lebbah H. A concept of equilibrium for a game under uncertainty[J]. European J of Operational Research, 1999, 117(1): 145-156.

共引文献32

同被引文献24

引证文献5

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部