期刊文献+

具有模糊支付的主从博弈的Nash平衡的存在性 被引量:2

The Existence of Nash Equilibrium for Leader-follower Games with Fuzzy Payment
在线阅读 下载PDF
导出
摘要 本文在局中人的支付为模糊值函数的情况下,主要研究n人非合作模糊博弈和主从模糊博弈的Nash平衡存在性。首先,引入模糊数及它们之间的偏序关系、欧式空间Rn中连续模糊值函数及其保不等式性、最值性等性质。其次,建立模糊值函数对应的极大值定理。随后,利用这一极大值定理及Kakutani不动点定理证明了n人非合作模糊博弈Nash平衡的存在性。基于此,最后证明了主从模糊博弈Nash平衡存在性,并通过举例说明上述两类Nash平衡的存在性结果是有效的。 The existence of Nash equilibria of n-person non-cooperative fuzzy games and that of leader-follower fuzzy games are mainly studied in this paper,when the players’payoff functions are fuzzy value functions.Firstly,based on fuzzy number and its partial order relationship,a continuous fuzzy value function with its domain in Rn is introduced,and the properties such as inequality-preserving and maximum property are proved.Secondly,the maximum theorem under the fuzzy value function is established.Thirdly,the existence of Nash equilibria of n-person non-cooperative fuzzy games is proved by the maximum theorem and Kakutani fixed point theorem.Finally,based on above theorems,the existence of Nash equilibria of leader-follower fuzzy games is proved,and the validity of existence of Nash equilibria of the two fuzzy games is illustrated by examples.
作者 刘珍丽 王国玲 杨光惠 王明婷 LIU Zhen-li;WANG Guo-ling;YANG Guang-hui;WANG Ming-ting(School of Mathematics and Statistics,Guizhou University,Guiyang 550025,China)
出处 《模糊系统与数学》 北大核心 2023年第2期69-80,共12页 Fuzzy Systems and Mathematics
基金 国家自然科学基金资助项目(11271098) 贵州省科技计划项目(黔科合基础1067号) 贵州大学引进人才科研项目(59)
关键词 模糊值函数 极大值定理 n人非合作模糊博弈 主从模糊博弈 NASH平衡 Fuzzy Value Function Maximum Theorem n-person Non-cooperative Fuzzy Game Leader-follower Fuzzy Game Nash Equilibrium
作者简介 刘珍丽(1997-),女,研究方向:应用数学;王国玲(1992-),女,博士,研究方向:应用数学;通信作者:杨光惠(1976-),女,教授,研究方向:非合作博弈论,不确定性理论等;王明婷(1996-),女,研究方向:应用数学。
  • 相关文献

参考文献9

二级参考文献34

  • 1LI Hongxing.Probability representations of fuzzy systems[J].Science in China(Series F),2006,49(3):339-363. 被引量:13
  • 2吴从Xin 马明.模糊分析学基础[M].北京:国防工业出版社,1991..
  • 3Stackelberg H V. The theory of the market economy[M]. Oxford : Oxford University Press, 1952: 97-105.
  • 4盛昭瀚.主从递阶决策[M].北京:科学出版社,1998:3-17.
  • 5Basar T, Olsder G J. Dynamic noncooperative games[M]. New York: Academic Press, 1995: 25-37.
  • 6Pang J S, Fukushima M. Quasi-variational inequalities, generalized Nash equilibri and multi-leader-follower games[J]. Computational Management Science, 2005, 2(1): 21-56.
  • 7Yu J, Wang H L. An existence theorem for equilibrium points for multi-leaders-follower games[J]. Nonlinear Analysis TMA, 2008, 69(5-6): 1-15.
  • 8Zhukovskii V I. Linear quadratic differential games[M]. Naoukova Doumka: Kiev, 1994: 96-105.
  • 9Larbani M, Lebbah H. A concept of equilibrium for a game under uncertainty[J]. European J of Operational Research, 1999, 117(1): 145-156.
  • 10张广全,模糊值测度论,1998年

共引文献67

同被引文献8

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部