期刊文献+

不确定性下非合作博弈简单Berge均衡的存在性 被引量:16

Existence of simple Berge equilibrium for non-cooperative games under uncertainty
原文传递
导出
摘要 在已知不确定参数变化范围的假设下,研究了非合作博弈简单Berge均衡的存在性问题.基于Zhukovskii提出的简单Berge均衡及具有不确定参数的非合作博弈NS均衡概念,定义了具有不确定参数的帕雷托简单Berge均衡(PSBE)及弱帕雷托简单Berge均衡(WPSBE),并借助Ky Fan不等式证明其存在性,最后用算例验证其可行性. Under the assumption that the domain of the undetermined parameters can vary is known, the existence of simple Berge equilibrium for non-cooperative games is investigated. Based on the concept of simple Berge equilibrium and NS-equilibrium introduced by Zhukovskii for non-cooperative games, the notions of Pareto simple Berge equilibrium (PSBE) and Weak Pareto simple Berge equilibrium (WPSBE) are defined, and theorems of existence of the equilibrium are also provided by means of the Ky Fan inequality. Finally, a numeric example is raised to illustrate the proposed method's feasibility.
作者 张会娟 张强
出处 《系统工程理论与实践》 EI CSSCI CSCD 北大核心 2010年第9期1630-1635,共6页 Systems Engineering-Theory & Practice
基金 国家自然科学基金(70471063 70771010) 985工程二期项目(107008200400024)
关键词 非合作博弈 简单Berge均衡 KY Fan不等式 不确定性 non-cooperative games simple Berge equilibrium Ky Fan inequality uncertainty
作者简介 张会娟(1982-),女,博士研究生,研究方向:模糊决策与对策; 张强(1955-),男,教授,博士生导师,研究方向:模糊决策与对策.
  • 相关文献

参考文献12

  • 1Nash J. Non-cooperative games[J]. Annals of Mathematics, 1951, 54 (5): 286-295.
  • 2Berge C. Theorie Generale Des jeux a n-Personnes[M]. Paris: Gauthier Villars, 1957.
  • 3Zhukovskii V I. Linear Quadratic Differential Games[M]. Kiew: Naoukova Doumka, 1994.
  • 4Nessah R, Larbani M, Tazdait T. A note on Berge equilibrium[J]. Applied Mathematics Letters, 2007, 20:926- 932.
  • 5Larbani M, Nessah R. A note on the existence of Berge and Berge-Nash equilibria[J]. Mathematical Social Sciences, 2008, 55: 258-271.
  • 6Abalo K Y, Kostreva M M. Fixed points, Nash games and their organizations[J]. Topological Methods in Nonlinear Analysis, 1996, 8: 205-215.
  • 7Abalo K Y, Kostreva M M. Equi-well-posed games[J]. Journal of Optimization Theory and Applications, 1996, 89: 89-99.
  • 8Abalo K Y, Kostreva M M. Some existence theorems of Nash and Berge equilibria[J]. Applied Mathematics Letters, 2004, 17:569-573.
  • 9Abalo K Y, Kostreva M M. Berge equilibrium: Some recent results from fixed-point theorems[J]. Applied Math- ematics and Computitional, 2005, 169: 624-638.
  • 10Larbani M, Lebbah H. A concept of equilibrium for a game under uncertainty[J]. European Journal of Operational Research, 1999, 117:145- 156.

同被引文献143

引证文献16

二级引证文献69

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部