期刊文献+

减少模态混叠的改进EEMD算法 被引量:7

Improved Ensemble Empirical Mode Decomposition to Reduce Modal Aliasing
在线阅读 下载PDF
导出
摘要 集合经验模态分解(EEMD)近年来被大量应用于声发射等非平稳信号处理和管道机械故障诊断领域,针对EEMD中低频部分存在的模态混叠问题,提出了一种改进停止准则的EEMD算法。该方法将所添加的高斯白噪声进行EMD分解,得到分解结果的最小绝对和,通过改进停止准则,提高EEMD结果的准确性。仿真结果表明:该方法相比Huang和Torres的方法更准确。 Ensemble empirical mode decomposition (EEMD) is widely used in acoustic emission and other non-stationary signal processing such as pipeline mechanical fault diagnosis these years. An algorithm based on the EEMD with improved stopping criterion was proposed aiming at modal aliasing in EEMD to improve the accuracy, and the added Gaussian white noise was decomposed by empirical mode decomposition (EMD) and the stopping criterion was improved based on the absolute value summation of decomposition results to make the decomposition more accurate. Simulation indicates that this method is more accurate than that of Huanz' s and Tones' s.
出处 《重庆理工大学学报(自然科学)》 CAS 2015年第1期111-114,130,共5页 Journal of Chongqing University of Technology:Natural Science
基金 重庆市自然科学基金资助项目(CSTC 2005BB0168)
关键词 集合经验模态分解 停止准则 迭代筛选 EEMD stopping criterion iteration screening
作者简介 作者简介:周颖涛(988-),男,硕士研究生,主要从事油气储运及自动化方向研究; 通讯作者 周绍骑(1962-),男,博士生导师,教授,主要从事油气储运控制理论与系统研究。
  • 相关文献

参考文献15

  • 1HUANG N E, SHEN Z, LONG S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlin- ear and non-stationary time series analysis [ J ]. Proc R Soe Lond, 1998,454A :903 - 993.
  • 2HUANG N E, LONG S R, QU W D, et al. Applications of Hilbert-Huang Transform to Nonstationary Financial Time Series Analysis[ J]. Journal Applied Stochastic Models in Business and Industry ,2003,19:245 - 268.
  • 3WU Z, HUANG N E, CHEN X. Some Considerations on Physical Analysis of Data [ J ]. Adv Adaptive Data Anal, 2011,3(l&2) :95 - 113.
  • 4HUANG N E,CHEN X,LO M T,et al. On Hilbert Spec- tral Representation:A True Time-Frequency Representa- tion for Nonlinear and Nonstationary Data[ J]. Adv Adap- tive Data Anal, 2011,3 ( 1 &2 ) : 63 - 93.
  • 5钟佑明,秦树人.希尔伯特-黄变换的统一理论依据研究[J].振动与冲击,2006,25(3):40-43. 被引量:55
  • 6苗晟,王威廉,姚绍文.Hilbert-Huang变换发展历程及其应用[J].电子测量与仪器学报,2014,28(8):812-818. 被引量:54
  • 7叶吉祥,胡海翔.Hilbert边际能量谱在语音情感识别中的应用[J].计算机工程与应用,2014,50(7):203-207. 被引量:5
  • 8HUANG N E, SHEN S S. Hilbert-Huang transform and its applications[ M]. Singapore :World scientific publish- ing co pte ltd,2014.
  • 9胡爱军,孙敬敬,向玲.经验模态分解中的模态混叠问题[J].振动.测试与诊断,2011,31(4):429-434. 被引量:164
  • 10WU Z, HUANG N E. Ensemble empirical mode decompo- sition: a noise-assisted data analysis method [ J ]. Ad- vances in adaptive data analysis ,2009,1 (1) :1 -41.

二级参考文献50

共引文献306

同被引文献86

引证文献7

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部