摘要
集合经验模态分解(EEMD)近年来被大量应用于声发射等非平稳信号处理和管道机械故障诊断领域,针对EEMD中低频部分存在的模态混叠问题,提出了一种改进停止准则的EEMD算法。该方法将所添加的高斯白噪声进行EMD分解,得到分解结果的最小绝对和,通过改进停止准则,提高EEMD结果的准确性。仿真结果表明:该方法相比Huang和Torres的方法更准确。
Ensemble empirical mode decomposition (EEMD) is widely used in acoustic emission and other non-stationary signal processing such as pipeline mechanical fault diagnosis these years. An algorithm based on the EEMD with improved stopping criterion was proposed aiming at modal aliasing in EEMD to improve the accuracy, and the added Gaussian white noise was decomposed by empirical mode decomposition (EMD) and the stopping criterion was improved based on the absolute value summation of decomposition results to make the decomposition more accurate. Simulation indicates that this method is more accurate than that of Huanz' s and Tones' s.
出处
《重庆理工大学学报(自然科学)》
CAS
2015年第1期111-114,130,共5页
Journal of Chongqing University of Technology:Natural Science
基金
重庆市自然科学基金资助项目(CSTC
2005BB0168)
作者简介
作者简介:周颖涛(988-),男,硕士研究生,主要从事油气储运及自动化方向研究;
通讯作者 周绍骑(1962-),男,博士生导师,教授,主要从事油气储运控制理论与系统研究。