期刊文献+

改进Hilbert-Huang变换及其在转静子碰摩仿真中的应用 被引量:10

Improved Hilbert-Huang transform and its application in rotor-stator rub
在线阅读 下载PDF
导出
摘要 针对Hilbert-Huang变换(HHT)的不足,应用时间序列重构矩阵奇异值分解的能量分析方法改进了HHT,并提出了用来识别伪固有模态函数(IMF)的方法.利用仿真信号检验了改进HHT的效果.将改进后的HHT应用到某双转子航空发动机轻碰摩故障仿真试验结果的检测中,并与改进前HHT和小波分析的结果进行了比较,得出了改进后的HHT具有有效分离出微弱信号分量等优势,且能比小波变换更好地确定碰摩的存在.  In order to overcome the shortages of Hilbert-Huang transform(HHT),an improved HHT was proposed by the energy analysis method based on the singularity value decomposition of the track matrix reconstructed by time series,and a method for judging the pseudo-IMFs by empirical mode decomposition(EMD) was also presented.The advantages of improved HHT were verified from simulation signals.Then,the improved HHT was applied to detect the slight rubbing simulation of dual-rotor aero engine.The simulation results were compared with previous HHT and wavelet transform,respectively,showing that the improved HHT has the advantage of separating efficiently the weak component of signals from other strong components,and also confirming the slight rubbing more easily.The analytical results provide a useful reference for diagnosing the fault of rubbing.
出处 《航空动力学报》 EI CAS CSCD 北大核心 2007年第10期1779-1784,共6页 Journal of Aerospace Power
基金 航空科学基金(03I51037)
关键词 航空、航天推进系统 改进HHT 碰摩 经验模态分解(EMD) 故障诊断 aerospace propulsion system improved Hilbert-Huang transform(HHT) rub empirical mode decomposition(EMD) fault diagnose
作者简介 何田(1979-),男,四川广安人,博士生,主要从事机械系统动力学及故障诊断的研究.
  • 相关文献

参考文献7

  • 1Peng Z K,Chu F L,He Y Y.Vibration signal analysis and feature extraction based on reassigned wavelet scalogram[J].Journal of Sound and Vibration,2002,253(5):1087-1100.
  • 2Peng Z K,Peter W T,Chu F L.A comparison study of improved Hilbert-Huang transform and wavelet transform:Application to fault diagnosis for rolling bearing[J].Mechanical Systems and Signal Processing,2005,19:974-988.
  • 3Huang N E,Shen Z,Long S R.The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J].Proc R Soc Lond A,1998,454:903-995.
  • 4胡劲松,杨世锡,吴昭同,严拱标.基于EMD和HT的旋转机械振动信号时频分析[J].振动.测试与诊断,2004,24(2):106-110. 被引量:48
  • 5Peng Z K,Peter W T,Chu F L.An improved Hilbert-Huang transform and its application in vibration signal analysis[J].Journal of Sound and Vibration,2005,286:187-205.
  • 6沈国际,陶利民,陈仲生.多频信号经验模态分解的理论研究及应用[J].振动工程学报,2005,18(1):91-94. 被引量:34
  • 7单颖春,刘献栋,何田,李其汉.双转子系统碰摩有限元接触分析模型及故障诊断[J].航空动力学报,2005,20(5):789-794. 被引量:18

二级参考文献15

  • 1Vasudevan K, Cook F A. Empirical mode skeletonization of deep crustal seismic data: theory and applications. Journal of Geophysical Research-Solid Earth,2000, (105):7845~7856
  • 2Echeverria J C, Crowe J A, Woolfson M S, et al. Application of empirical mode decomposition to heart rate variability analysis. Medical & Biological Engineering &Computing, 2001, (39) :471~479
  • 3Norden E, Huang Z S, Steven R L, et al. The empirical mode decomposition and the non-stationary time series analysis. In: Proc. R. Soc. Lond, 1998. 903~995
  • 4Better algorithms for analyzing nonlinear, nonstationary data. http:∥tco. gsfc. nasa. gov
  • 5Loh C H, Wu T C, Huang N E. Application of the empirical mode decomposition-Hilbert spectrum method to identify near-fault ground-motion characteristics and structural responses. Bulletin of the Seismological Society of America, 2001, (91) :1339~1357
  • 6Blunt D M. Synchronous averaging of helicopter tail gearbox vibration: phase reference considerations[R]. Defense Science and Technology Organization of Australia DOD, 1998. DSTO-TR-0397.
  • 7Huang N E, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysisFR]. Procedures of the Royal Society of London, 1998. A454(3) :903-995.
  • 8Ehrich F.The Dynamic Stability of Rotor/Stator Radial Rubs in Rotating Machinery[J].ASME Journal of Engineering for Industry,1969,91:1025~1028.
  • 9孟越.[D].北京:北京航空航天大学,2002.
  • 10袁惠群,闻邦椿,王德友.非线性碰摩力对碰摩转子分叉与混沌行为的影响[J].应用力学学报,2001,18(4):16-20. 被引量:37

共引文献96

同被引文献80

引证文献10

二级引证文献52

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部