摘要
针对工业现场间歇性非平稳时间序列中的特征提取与状态预测问题,提出了一种基于集合经验模态分解(EEMD)、主成分分析(PCA)和支持向量机(SVM)的预测新方法。首先,利用EEMD算法对间歇性非平稳时间序列进行多时间尺度分析,得到一组不同尺度的本征模函数(IMF)分量;然后,基于"3σ"原则估计噪声能量,自适应确定累计贡献率,利用PCA算法去除IMF中存在的噪声,降低特征维数和冗余度;最后,在确定SVM关键参数的基础上,以主分量作为输入变量预测未来。实例测试效果显示:平均绝对误差(MAE)、均方误差(MSE)、平均绝对误差百分比(MAPE)和均方误差百分比(MSPE)分别为514.774,78.216,12.03%和1.862%。实验结果表明:风能场输出功率时间序列经过EEMD算法和PCA算法的进一步消去噪声处理,在抑制混频现象发生的同时降低了非平稳性,使得最后进行SVM预测的精度较未经PCA处理更高。
To solve the problem of feature extraction and state prediction of intermittent non-stationary time series in the industrial field, a new prediction approach based on Ensemble Empirical Mode Decomposition (EEMD), Principal Component Analysis (PCA) and Support Vector Machine (SVM) was proposed in this paper. Firstly, the intermittent non-stationary time series was analyzed by multiple time scales and decomposed into a couple of IMF components which possessed the different scales by the EEMD algorithm. Then, the noise energy was estimated to determine the cumulative contribution rate adaptively on the basis of 3-sigma principle. The feature dimension and redundancy were reduced and the noise in IMF was removed by using PCA algorithm. Finally, on the basis of the determining of SVM key parameters, the principal components were regarded as input variables to predict future. Instance's testing results show that Mean Average Error ( MAE), Mean Squared Error (MSE), Mean Absolute Percentage Error (MAPE) and Mean Squared Percentage Error (MSPE) were 514. 774, 78. 216, 12.03% and 1. 862%, respectively. It is concluded that the SVM prediction of the time series of output power of wind farm possesses a higher accuracy than not using PCA because the frequency mixing phenomena was inhibited, the non-stationary was reduced and the noise was further eliminated by EEMD algorithm and PCA algorithm.
出处
《计算机应用》
CSCD
北大核心
2015年第3期766-769,774,共5页
journal of Computer Applications
基金
国家自然科学基金资助项目(51406071
71363249)
云南省科技支撑项目(KKSTJ201358015)
云南省教育厅重点基金资助项目(2012Z101)
关键词
间歇性非平稳时间序列
集合经验模态分解
主成分分析
支持向量机
组合模型预测
intermittent non-stationary time series
Ensemble Empirical Mode Decomposition (EEMD)
PrincipalComponent Analysis (PCA)
Support Vector Machine (SVM)
combination model forecast
作者简介
桑秀丽(1980-),女,山东泰安人,教授,博士,主要研究方向:数据挖掘;
肖清泰(1989-),男,山东菏泽人,硕士研究生,主要研究方向:数据挖掘;
王华(1965-),男,湖北咸宁人,教授,博士生导师,博士,主要研究方向:质量工程;
韩继光(1977-),男,山东临沂人,讲师,博士研究生,主要研究方向:数学模型。电子邮箱kmqdi2013@163.com