期刊文献+

基于ARFIMA-GARCH模型的黄金价格分析及预测 被引量:4

Analysis and Forecasts of Gold Price Based on the ARFIMA-GARCH Model
在线阅读 下载PDF
导出
摘要 通过对上海黄金交易所现货黄金Au99.95品种2007年1月4日到2014年2月28日共1736个交易日的收盘价格的研究,发现上海黄金交易所黄金收益率序列具有长期记忆性,其残差具有明显的波动集聚性。利用时间序列的相关理论,并通过EVIEWS6.0及MATLAB软件对序列进行分析,建立ARFIMA-GARCH模型,此模型反映了黄金收益率序列的长记忆性和波动集聚性,并对黄金收益率序列进行预测。结果显示,预测结果与实际价格拟合度高,预测误差较小。该模型可以更加准确地描述黄金价格序列的动态特征,通过此模型可以使黄金投资者和生产者更加了解黄金价格序列的特点。 The gold return series has a long-term memory and its residuals generate significant volatility clusters have been founded. The ARFIMA-GARCH model of gold price is presented by time series theory based on the closing price of gold in stock named AU99.95 in Shanghai Gold Exchange during 2007-01- 04--2014-02-28, totally 1736 trading days. This model can fit the series precisely and can be showed by the empirical results, and the prediction error is small with software EVIEWS6. 0 and MATLAB. The model can be taken advantage to describe the production process of gold price dynamically. And it's beneficial to gold producers and investors to know more about the characteristics of the sequence of the gold price.
出处 《青岛大学学报(自然科学版)》 CAS 2014年第4期10-14,共5页 Journal of Qingdao University(Natural Science Edition)
关键词 黄金价格 长记忆性 ARFIMA—GARCH模型 预测 gold price long-term memory ARFIMA-GARCH model predict
作者简介 叶静,女,硕士研究生,主要研究方向:数理金融。 通讯作者:赵凯,男,教授,主要研究方向:小波分析,数理金融等。
  • 相关文献

参考文献9

二级参考文献14

  • 1丁忠明,夏万军.中国股市波动的CARR模型分析[J].商业经济与管理,2005(12):41-45. 被引量:8
  • 2周杰,刘三阳.条件自回归极差模型与波动率估计[J].数量经济技术经济研究,2006,23(9):141-149. 被引量:23
  • 3范思琦,孙黎,白岩.影响黄金价格因素及应对策略[J].黄金,2006,27(12):8-11. 被引量:18
  • 4魏宇.有偏胖尾分布下的金融市场风险测度方法[J].系统管理学报,2007,16(3):243-250. 被引量:15
  • 5Walter Enders. ippiied Econometric Time Series (Second Edition).
  • 6ANDERSEN T G, BOLLERSLEV T. Exchange Rate Returns Standardized by Realized Volatility are (Nearly) Gaussian [J]. Multinational Finance Journal, 2000, 4(3-4): 159-179.
  • 7BARNDORFF-NIELSEN O E. Power and Bipower Variation with Stochastic Volatility and Jumps [J]. Journal of Finan- cial Econometrics, 2004, 2(1): 1-37.
  • 8LI H D, CAO S N. The Properties and Mechanismof Long-TermMemory i,1Nonparametric Volatility [J]. Physica A, 2010, 389(16): 3254- 3259.
  • 9LEE J Y. Constancy Test for FARIMA Long Memory Processes [J]. Journal of the Korean Statistical Society, 2011 (40): 161-172.
  • 10TORBEN G A. A Reduced form Framework for Modeling Volatility of Speculative Prices Based on Realized Variation Measures [J]. Journal of Econometrics, 2011, 160(1) 176-189.

共引文献23

同被引文献35

  • 1冯春山,吴家春,蒋馥.石油价格的ARFIMA模型预测研究[J].上海理工大学学报,2005,27(6):539-542. 被引量:10
  • 2翟敏,华仁海.国内外黄金市场的关联研究[J].产业经济研究,2006(2):30-35. 被引量:43
  • 3Taylor S J. Modling stochastic volalility [ J ]. Mathematica Finance, 1994, (4) : 183 - 204.
  • 4Engle R F. Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation [ J]. Econometrica, 1982, (50) :987 - 1007.
  • 5Bollerslev T. Generalized autoregressive conditional het- eroskedasticity [ J ]. Journal of Econometrics, 1986, ( 31 ) : 307 - 327.
  • 6Nelson D B. Conditional heteroskedasticity in asset re- turns : A new approach [ J ]. Econometrica, 1991, (2) : 347 - 370.
  • 7Hamilton J D, Susmel R. Autoregressive conditional het- eroscedasticity and changes in regime [ J ]. Journal of E- conometrics, 1994, ( 1 ) :307 - 333.
  • 8Gray S F. Modeling the conditional distribution of interest rate as a regime - switching process [ J ]. Journal of Finan- cial Economics, 1996, (42) :27 - 62.
  • 9Klaassen F. Improving GARCH volatility forecast with re- gime - switching GARCH [ J ]. Empirical Economics, 2002, ( 27 ) : 363 - 394.
  • 10Walid C, Chaker A, Masood O. Stock market volatility and exchange rates in emerging countries: A Markov - state switching approach [ J ]. Emerging Markets Review, 2011, (3) :272 -292.

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部