期刊文献+

有偏胖尾分布下的金融市场风险测度方法 被引量:15

Study on Financial Market Risk Measures Based on Skewed and Fat-tailed Distributions
在线阅读 下载PDF
导出
摘要 通过对上证综指和世界股市若干重要指数收益的统计特征分析发现,无论是成熟资本市场还是新兴资本市场,其收益分布都展现出较为显著的“有偏”和“尖峰胖尾”特征,因此,主流金融理论假定的正态分布或对称学生分布都无法全面准确刻画股市收益的真实分布特征和风险状况。通过引入有偏的学生分布,分析和对比了不同收益分布假定下的市场波动率和风险价值计算方法,并利用风险价值的失败率似然比检验以及动态分位数回归检验法,实证分析了不同分布模型的适用范围和精确程度,探讨了非正态分布假定下的金融市场风险测度方法。 With empirical studies on the statistical characteristics of several important stock indices, we find that all return distributions are skewed and fat-tailed, no matter whether it is in mature capital markets or in emerging ones. So the assumptions of normal or symmetric student distributions in standard finance cannot describe the true features of return distributions and market risk conditions. This paper in- troduces the skewed student distribution, and compares it with other distribution assumptions in terms of volatility and VaR calculations. We also use Kupiec LR test and Dynamic quantile regression to test the accuracy and applicability of different kinds of distribution models, and discuss the financial market risk measures under non-normal distribution.
作者 魏宇
出处 《系统管理学报》 北大核心 2007年第3期243-250,共8页 Journal of Systems & Management
基金 国家自然科学基金资助项目(70501025) 国家杰出青年科学基金资助项目(70229001)
关键词 有偏胖尾分布 波动性 APARCH模型 风险测度 skewed and fat-tailed distribution volatility APARCH risk measures
作者简介 魏宇(1975-),男,副教授。研究方向为金融工程和金融复杂性。
  • 相关文献

参考文献14

  • 1[1]Markowitz H.Portfolio Selection:Efficient Diversification of Inverstments[M].New York:Basil Blackwell,1959.
  • 2[2]Markowitz H.Portfolio selection[J].Journal of Finance,1952,7:77-91.
  • 3[3]Simaan Y.Estimation risk in portfolio selection:the mean variance model versus the mean absolute deviation model[J].Management Science,1997,43:1437-1446.
  • 4[4]Young M R.A Minimax portfolio selection rule with linear programming solution[J].Management Science,1998,44:673-683.
  • 5[5]Morgan J P.RiskMetrics technical document[M].4th ed.New York:J P Morgan,1996.
  • 6[6]Bouchaud J P,Potters M.Theory of financial risk:from statistical physics to risk management[M].Cambridge:Cambridge University Press,1999.
  • 7[7]Wagner N,Marsh T A.Measuring tail thickness under GARCH and an application to extreme exchange rate changes[J].Journal of Empirical Finance,2005,12(1):165-185.
  • 8[8]Giot P,Laurent S.Value-at-Risk for long and short positions[J].Journal of Applied Econometrics,2003,18:641-664.
  • 9[9]Kupiec P.Techniques for verifying the accuracy of risk measurement models[J].Journal of Derivatives,1995,2:173-184.
  • 10[10]Engle R,Manganelli,S.CAViaR:Conditional autoregressive Value at Risk by regression quantiles[J].Journal of Business and Economic Statistics,2004,22:367-381.

同被引文献212

引证文献15

二级引证文献90

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部