期刊文献+

基于条件自回归极差模型的沪深300指数波动性分析 被引量:1

Analysis of the Volatility of SCI 300 Based on the Conditional Auto-Regressive Range Model
在线阅读 下载PDF
导出
摘要 通过选取不同的分布对自回归条件极差模型进行了改进,选择GARCH模型对对数收益率的波动率进行了建模,运用贝叶斯对两种模型中的参数进行分析.通过用沪深300指数数据进行实证分析,WinBUGS软件对两种模型当中的参数进行仿真,由参数估计值分析得到,自回归条件极差模型对波动短期效应有更好的捕捉能力,而GARCH模型优势在长期效应. In 2005,Chou suggested an approach to conduct the volatility analysis by use of the Auto-regressive Range Model,yet the model was blame for its deficiencies found in the distribution assumptions of logarithmic mean value.By selection of different distributions,improvements were made to the model.By contrast,modeling was made of the volatility rate of the logarithmic return rate by selection of the GARCH Model and by use of Bayesian the parameters of the two models were subjected to a parameter analysis and an empirical analysis was done by taking advantage of the SCI300 index data;and a parameter simulation was also done to the two models by WinBugs.By means of the analysis of the parameter estimates it was concluded that the Auto-Regressive Model is of a better performance in capturing the short-term effects while the GARCH Model is better at capturing the long-term effects.
作者 王亮
出处 《内江师范学院学报》 2015年第4期9-13,共5页 Journal of Neijiang Normal University
关键词 自回归条件极差模型 GARCH模型 波动性 贝叶斯 conditional auto-regressive range model GARCH Model volatility bayesian
作者简介 王亮(1988-),男,山西长治人,四川大学研究生.研究方向:金融数学
  • 相关文献

参考文献11

  • 1Mandelbrot B T. The variation of certain speculativepries [J]. Journal of Business, 1963,36(4) : 294-419.
  • 2Fama E F. The behavior of shock market prices [J].Journal of Business, 1965,38(1):34-105.
  • 3Engle R F. Autoregressive conditional heteroskedasticitywith estimates of the varianceof UK inflation [Jj. Econ-ometrica, 1982,50(4): 987-1008.
  • 4Bollerslev T. Generalized autoregressive conditional het-eroskedasticity [J], Journal ofEconometrics, 1986,31(3); 307-327.
  • 5Nelson D. Conditional heteroskedasticity in asset re-turns: A New Approach [J]. Econometrica,1991,59(2): 347-370.
  • 6Parkinson M. The extreme value method of estimatingthe variance of the rate ofreturn [J]. Journal of Busi-ness, 1980? 53(1) : 61-65.
  • 7Ray Y Chou. Forecasting financial volatilities with extremevalues: The conditionalautoregressive range model [J].Journal of Money? Credit, and Banking,2005,67(3):34-56.
  • 8丁忠明,夏万军.中国股市波动的CARR模型分析[J].商业经济与管理,2005(12):41-45. 被引量:8
  • 9周杰,刘三阳.条件自回归极差模型与波动率估计[J].数量经济技术经济研究,2006,23(9):141-149. 被引量:23
  • 10张苏林.我国黄金现货波动率预测能力分析——基于GARCH模型与CARR模型的比较[J].金融理论与实践,2011(8):47-50. 被引量:11

二级参考文献19

  • 1王玉荣.中国股票市场波动性研究——ARCH模型族的应用[J].河南金融管理干部学院学报,2002,20(5):36-37. 被引量:13
  • 2王佳妮,李文浩.GARCH模型能否提供好的波动率预测[J].数量经济技术经济研究,2005,22(6):74-87. 被引量:43
  • 3丁忠明,夏万军.中国股市波动的CARR模型分析[J].商业经济与管理,2005(12):41-45. 被引量:8
  • 4周杰,刘三阳.条件自回归极差模型与波动率估计[J].数量经济技术经济研究,2006,23(9):141-149. 被引量:23
  • 5Mandelbrot, B. The Variation of Certain Speculative Prices [J]. Journal of Business, 1963, (36) :294 - 419.
  • 6Parkinson, M.. The extreme value method for estimating the variance of the rate of return [ J ]. Journal of Business, 1980,(53) :61 - 65.
  • 7Chou, R. Forecasting financial volatilities with extreme values : the Conditional AutoRegressive Range ( CARR ) Model [ Z ] . Working paper, The Institute of Economics Academia Sinica, Taiwan, 2002.
  • 8Engle, R. , and J. Russell. Autoregressive conditional duration: a new model for irregular spaced transaction data[J]. Econometrica, 1998, (66) : 1127 - 1162.
  • 9Bollerslev, T., and J. Wooldridge Quasi maximum likelihood estimation and inference in dynamic models with time varying covariances[ J]. Econometric Reviews, 1992, (5).
  • 10Ray Y.Chou,Forecasting Financial Volatilities with Extreme Values:The Conditional Autoregressive Range Model,Journal of Money,Credit,and Banking,2005,67 (3),34~56.

共引文献34

同被引文献12

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部