期刊文献+

钢轨表面缺陷检测的图像预处理改进算法 被引量:34

Improved Image Preprocessing Algorithm for Rail Surface Defects Detection
在线阅读 下载PDF
导出
摘要 由于线阵相机拍摄的图像光照不均、对比度低,使得钢轨表面离散缺陷检测成为机器视觉检测的难点,为此提出局部非线性对比度增强法和改进最大熵阈值分割法对钢轨图像进行预处理.该算法将局部区域内相对较低的灰度级映射到更低的范围,相对较高的灰度级映射到更高的范围,实现对比度拉伸;通过分析图像的目标熵、背景熵、灰度概率分布曲线,使用图像目标熵最大、目标概率较小的改进最大熵阈值分割法对图像进行分割,得到包含噪声相对较少的图像.实验结果表明,文中提出的非线性对比度图像增强算法简单、快速、有效,而且增强效果与光照无关;与原始的最大熵、目标最大熵、OSTU阈值分割法相比,改进的最大熵分割阈值较小,分割后的图像包含的噪声少;改进的预处理算法对测试图像的漏检率和误检率分别是6.2%和7.3%. It is a challenge to detect discrete defects in a vision system because of illumination inequality and low contrast of rail images which obtained by linear array camera. This paper presents a local non- linear contrast (LNC) enhancement and an improved maximum entropy (IME) threshold segmentation to preprocess images. LNC enhances the contrast by mapping relatively low gray level to lower gray level, high gray level to higher gray level. By analyzing curves of objects entropy, background entropy and gray- level probability distribution of image, we proposed IME algorithm to segment the image which selects a threshold that maximizes the object entropy and meanwhile keeps the object proportion in a low level, therefore, the pre-processed images contain less noise. The experimental results demonstrate that the LNC algorithm is easy to implement and enhances the image fast and effectively. What's more, it is illumination independent. IME segments image with smaller threshold and less noise compared with maximum entropy, object entropy and OSTU threshold segmentation methods. The undetected rate and false detection rate of improved preprocessing algorithms for test images is 6.2% and 7.3%, respectively.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2014年第5期800-805,共6页 Journal of Computer-Aided Design & Computer Graphics
基金 国家自然科学基金(51065021)
关键词 机器视觉 钢轨表面缺陷 图像增强 最大熵 machine vision rail surface defect image enhance maximum entropy
作者简介 袁小翠(1988-),女,博士研究生,主要研究方向为光机电一体化技术; 吴禄慎(1953),男,教授,博士生导师,论文通讯作者,主要研究方向为逆向工程及光机电一体化、虚拟现实技术; 陈华伟(1977-),男,讲师,博士。主要研究方向为图像处理与逆向工程.
  • 相关文献

参考文献13

  • 1Rubinsztejn Y. Automatic detection of objects of interest from rail track images [D]. Manchester: Manchester University. School of Computer Science, 2011.
  • 2Liu Z, Wang W, Zhang X F, etal. Inspection of rail surface defects based on image processing [C] //Proceedings of the 2nd International Asia Conference on Informatics in Control, Automation and Robotics. Los Alamitos- IEEE Computer Society Press, 2010:472-475.
  • 3王平,刘泽,王嵬,张广伟,孙秀芳.基于数字图像处理和特征提取的钢轨表面缺陷识别方法[J].现代科学仪器,2012,29(2):24-28. 被引量:10
  • 4王海涛,甄理,杨春霞,陈如冰,丁克勤,李冬,王平.基于计算机视觉的铁轨表面缺陷检测系统[J].无损检测,2011,33(11):38-41. 被引量:25
  • 5Tan T L, Sim K S, Tso C P, etal. Contrast enhancement of computed tomography images by adaptive histogram equalization-application for improved ischemie stroke detection [J]. International Journal of Imaging Systems and Technology, 2012, 22(3).. 153-160.
  • 6Mohan S, Ravishankar M. Optimized histogram based contrast limited enhancement for mammogram images [J]. American Council for an Energy -efficient EconomyInternational Journal on Information Technology, 2013, 1 (3) .. 66-71.
  • 7Nacereddine N, Hamami L, Oucief N. Non-parametric histogram-based thresholding methods for weld defect detection in radiography [J], World Academy of Science, Engineering and Technology, 2005, 9.. 213-217.
  • 8Otsu N. A threshold selection method from gray-level histograms [J]. IEEE Transaction on Systems, Man, and Cybernetics, 1979, 9(1)- 62-66.
  • 9KapurJ N, Sahoo P K, Wong A K C. A new method for gray-level picture thresholding using the entropy of the histogram [J]. Computer Vision, Graphics, and Image Processing, 1985, 29(3)- 273-285.
  • 10Kittler J, Illingworth J. Minimum error thresholding [J]. Pattern Recognition, 1986, 19(1).. 41-47.

二级参考文献15

  • 1袁懿弘,吴锡生.基于去噪阈值的图像平滑模糊算法方法研究[J].计算机工程与设计,2005,26(7):1837-1839. 被引量:10
  • 2刘蕴辉,刘铁,王权良,罗四维.基于图像处理的铁轨表面缺陷检测算法[J].计算机工程,2007,33(11):236-238. 被引量:24
  • 3WANG Xue, TANG Yike, CHENG Ping. Machine-vision detection for rail-steel's surface flaws based on quantum neural network[C]. The 7th World Congress on Intelligent Control and Automation,2008:5050-5055.
  • 4Deutschl E, Gasser C, et al. Defect detection on rail surfaces by a vision based system[C]. IEEE Intelligent, Vehicles Symposium, Parma, Italy, 2004: 507-511.
  • 5Singh M, Singh S, et al. Autonomous rail track inspection using vision based system[C]. IEEE International Conference on Computational Intelligence for Homeland Security and Personal Safety, Alexandria, VA, USA, 2006:56-59.
  • 6Du S, Ward RK. Adaptive Region-based Image Enhancement Method for Robust Face Recognition under Variable Illumination Conditions[J]. IEEE Transactions on Circuits and Systems for Video Technology,2010,20(9).. 1165-1175.
  • 7BAI Xiangzhi, ZHOU Fugen. Multi scale top-hat transform based algorithm for image enhancement[C]. Signal Processing- (ICSP),2010 IEEE 10th International Confer ence on Digital Object Identifier,2010.-797-800.
  • 8RafaelC.Gonzalez,RichardE.Woods.阮秋琦,阮宇智,等译.数字图像处理.第二版[M].北京.电子工业出版社,2007:423-431.
  • 9王永波,陈继荣.二维Otsu阈值分割算法的改进及应用[J].计算机仿真,2008,25(4):263-266. 被引量:21
  • 10冯小琴,宋文爱,马锦红.铁轨磨损检测系统[J].国外电子测量技术,2008,27(10):32-34. 被引量:5

共引文献31

同被引文献354

引证文献34

二级引证文献442

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部