期刊文献+

基于背景差分与最大熵的轨面缺陷分割

Rail Surface Defect Segmentation Based on Background Difference and Maximum Entropy
在线阅读 下载PDF
导出
摘要 为了提高钢轨表面缺陷检测的效率和准确率,提出了一种基于背景差分与最大熵的轨面缺陷检测算法.首先建立钢轨图像背景模型并将原图像与背景图进行差分操作,以此来避免光照变化和反射不均的影响,更准确地突出缺陷区域;然后将改进的遗传算法与最大熵值法相结合来寻找最佳分割阈值并对差分图进行二值化,通过结合改进遗传算法加快了最大熵值法的运算速度;最后对二值图进行滤波操作,完成钢轨表面缺陷的分割.仿真结果表明该方法能够更加快速准确地分割出缺陷,精确率、召回率和正确率分别达88.6%、93.4%和90.6%. To improve the efficiency and accuracy of rail surface defect detection,a rail surface defect detection algorithm based on background difference and maximum entropy is proposed.Firstly,the background model of the rail images is built,and the original images are differentiated from the background images to avoid the influence of illumination change and uneven reflection and accurately highlight the defect area.Then,the improved genetic algorithm is combined with the maximum entropy method to seek the best segmentation threshold and binarize the difference graph.The operational speed of the maximum entropy method is accelerated by the improved genetic algorithm.Finally,the binary images are filtered to complete the segmentation of rail surface defects.The simulations indicate that this method can segment defects quickly and accurately,and the precision,recall,and accuracy are 88.6%,93.4%,and 90.6%,respectively.
作者 王国伟 陈光武 魏宗寿 WANG Guo-Wei;CHEN Guang-Wu;WEI Zong-Shou(Key Laboratory of Opt-electonic Technology and Intelligent Control of Ministry of Education,Lanzhou Jiaotong University,Lanzhou 730070,China;School of Automation&Electrical Engineering,Lanzhou Jiaotong University,Lanzhou 730070,China;Gansu Provincial Key Laboratory of Traffic Information Engineering and Control,Lanzhou 730070,China)
出处 《计算机系统应用》 2022年第10期184-190,共7页 Computer Systems & Applications
基金 国家自然科学基金(61863024) 甘肃省科技引导计划(2020-61)
关键词 缺陷检测 背景差分 最大熵 轨面 改进遗传算法 图像分割 defect detection background difference maximum entropy rail surface improved genetic algorithm image segmentation
作者简介 通信作者:陈光武,E-mail:cgwyjh1976@126.com
  • 相关文献

参考文献12

二级参考文献128

  • 1张未.德国RAILCHECK光电式自动化钢轨检测系统在轨道检查车中的应用[J].哈尔滨铁道科技,2001(4):3-4. 被引量:8
  • 2宿丁,张启衡,陶冰洁,谢盛华.复杂背景下多源多目标图像的分形分割算法[J].红外与激光工程,2007,36(3):387-390. 被引量:16
  • 3刘蕴辉,刘铁,王权良,罗四维.基于图像处理的铁轨表面缺陷检测算法[J].计算机工程,2007,33(11):236-238. 被引量:24
  • 4汪筱红,须文波.遗传算法在最大熵多阈值分割的应用研究[J].贵州大学学报(自然科学版),2007,24(4):401-403. 被引量:6
  • 5李小鹏,严严,章毓晋.若干背景建模方法的分析和比较[C].第十三届全国图象图形学学术会议,2006:482-486.
  • 6Rubinsztejn Y. Automatic detection of objects of interest from rail track images [D]. Manchester: Manchester University. School of Computer Science, 2011.
  • 7Liu Z, Wang W, Zhang X F, etal. Inspection of rail surface defects based on image processing [C] //Proceedings of the 2nd International Asia Conference on Informatics in Control, Automation and Robotics. Los Alamitos- IEEE Computer Society Press, 2010:472-475.
  • 8Tan T L, Sim K S, Tso C P, etal. Contrast enhancement of computed tomography images by adaptive histogram equalization-application for improved ischemie stroke detection [J]. International Journal of Imaging Systems and Technology, 2012, 22(3).. 153-160.
  • 9Mohan S, Ravishankar M. Optimized histogram based contrast limited enhancement for mammogram images [J]. American Council for an Energy -efficient EconomyInternational Journal on Information Technology, 2013, 1 (3) .. 66-71.
  • 10Nacereddine N, Hamami L, Oucief N. Non-parametric histogram-based thresholding methods for weld defect detection in radiography [J], World Academy of Science, Engineering and Technology, 2005, 9.. 213-217.

共引文献213

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部