期刊文献+

基于反向P-M扩散的钢轨表面缺陷视觉检测 被引量:31

Research on Inverse P-M Diffusion-based Rail Surface Defect Detection
在线阅读 下载PDF
导出
摘要 研制了一种基于反向P-M(Perona-Malik)扩散的钢轨表面缺陷视觉检测装置,该装置可自动获取钢轨表面图像,并实现实时检测与定位钢轨表面缺陷.钢轨图像具有光照变化、反射不均、特征少等特点,为了在运动过程中从复杂的钢轨表面图像提取缺陷,首先将图像进行反向P-M扩散,然后将扩散后的图像与原图像进行差分,从而减小了上述因素的影响,最后将差分图像进行二值化操作,根据缺陷边缘特性和面积进行滤波,分割出缺陷图像.实验仿真和现场测试结果表明,该方法能很好地识别块状缺陷和线状缺陷,并且检测速度、精度、识别率和误检率都能很好地满足要求. Abstract A vision machine is developed for rail surface defects detection based on the inverse P-M (Perona-Malik) diffusion. The rail surface defects images can be obtained through an image acquisition system. The rail surface images show illumination variation, reflection inequality, and heterogeneous texture, they make the automated visual inspection task extremely difficult. The faultless region of the rail surface image is preserved by an inverse P-M model, but the fault region is smoothed after diffusing by an inverse P-M model. Therefore, by subtracting the inverse diffused image from the original image, the defects can be distinctly enhanced in the difference image. The influence of illumination variation, reflection inequality, and heterogeneous texture can also be decreased. A simple binary thresholding, followed by filter operations based on the edge performance and the size of defects, can then easily segment the defect. The simulation and field experiments indicate that the inspection machine can detect the rail surface defects effectively and the detection speed, accuracy, detection ratio and the fault ratio also satisfy the needs of automated rail track.
出处 《自动化学报》 EI CSCD 北大核心 2014年第8期1667-1679,共13页 Acta Automatica Sinica
基金 国家自然科学基金(60835004 61072121 61172160 61175075) 河南省科技攻关计划(142102210514)资助~~
关键词 反向P-M扩散 图像差分 钢轨表面缺陷 视觉检测 Inverse P-M (Perona-Malik) diffusion, image difference, rail surface defects, vision detection
作者简介 贺振东 湖南大学电气与信息工程学院博士研究生,郑州轻工业学院讲师,主要研究方向为图像处理和智能机器人. 王耀南 湖南大学电气与信息工程学院教授.1994年获湖南大学控制科学与工程专业博士学位.主要研究方向为智能控制,图像处理和智能机器人. 毛建旭 湖南人学电气与信息工程学院副教授.1993年获南昌大学学士学位,1999年铁东华理丁大学硕士学位,2003年获湖南大学控制理论与控制工程专业博士学位.主要研究方向为计算机视觉,图像处理与模式识别.
  • 相关文献

参考文献30

  • 1Jasiūniené E, ?ukauskas E. The ultrasonic wave interaction with porosity defects in welded rail head. ULTRAGARSAS (ULTRASOUND), 2010, 65(1): 12-18.
  • 2Vidaud M, Zwanenburg W J. Current situation on rolling contact fatigue--a rail wear phenomenon. In: Proceedings of the 9th Swiss Transport Research Conference. Monte Veritá, Swiss, 2009. 1-27.
  • 3Marino F, Distante A, Mazzeo P L, Stella E. A real-time visual inspection system for railway maintenance: automatic hexagonal-headed bolts. IEEE Transactions on Systems Man, and Cybernetics, Part C: Applications and Reviews, 2007, 37(3): 418-428.
  • 4Mandriota C, Stella E, Nitti M, Ancona N, Distante A. Rail corrugation detection by Gabor filtering. In: Proceedings of IEEE International Conference on Image Processing. Thessaloniki: IEEE, 2001. 626-628.
  • 5Mandriota C, Nitti M, Ancona N, Stella E, Distante A. Filter-based feature selection for rail defect detection. Machine Vision and Applications, 2004, 15(4): 179-185.
  • 6Papaelias M P, Roberts C, Davis C L. A review on non-destructive evaluation of rails: state-of-the-art and future development. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and rapid transit, 2008, 222(4): 367-384.
  • 7Deutschl E, Gasser C, Niel A, Werschonig J. Defect detection on rail surfaces by a vision based system. In: Proceedings of IEEE Intelligent Vehicles Symposium. Parma, Italy: IEEE, 2004. 507-511.
  • 8Shah M. Automated Visual Inspection/Detection of Railroad Track, Technical Report, BD550-08, Computer Vision Lab, University of Central Florida, USA, 2010.
  • 9Li Q Y, Ren S W. A real-time visual inspection system for discrete surface defects of rail heads. IEEE Transactions on Instrumentation and Measurement, 2012, 61(8): 2189-2199.
  • 10Xie X H. A review of recent advances in surface defect detection using texture analysis techniques. Electronic Letters on Computer Vision and Image Analysis, 2008, 7(3): 1-22.

二级参考文献121

  • 1贾迪野,黄凤岗,苏菡.一种新的基于高阶非线性扩散的图像平滑方法[J].计算机学报,2005,28(5):882-891. 被引量:28
  • 2付树军,阮秋琦,李玉,王文洽.基于各向异性扩散方程的超声图像去噪与边缘增强[J].电子学报,2005,33(7):1191-1195. 被引量:22
  • 3张晓玲,沈兰荪,Lam Kin-Man.一种基于分形码和模型约束的图像放大算法[J].电子学报,2006,34(3):433-436. 被引量:11
  • 4张良培,王毅,李平湘.基于各向异性扩散的SAR图像斑点噪声滤波算法[J].电子学报,2006,34(12):2250-2254. 被引量:14
  • 5Argenti F, Torricelli G, Alparone L. Signal-dependent noise removal in the undecimated wavelet domain [ J ]. IEEE International Conference on Acoustics, Speech, and Signal Processing, 2002,4(13/14/15/16/17) :3293 - 3296.
  • 6Andreu F, Ballester C, Caselles V, et al. Minimizing total variation flow [ J ]. Differential and Integral Equations, 2001,14(3) :321 - 360.
  • 7Monteil J, Beghdadi A. A new interpretation and improvement of the nonlinear anisotropie diffusion for image enhancement[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1999,21(9):940-946.
  • 8Black M J, Sapiro G, Marimont D H, et al. Robust anisotropic diffusion [ J ]. IEEE Transactions on Image Processing, 1998,7(3) :421 - 432.
  • 9Acharya T, Ray A K. Image processing: principles and applications[M]. Hoboken: John Wiley & Sons, Inc, 2005:79- 104.
  • 10Perona P, Malik J. Scale-space and edge detection using anisotropic diffusion [J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990, 12 ( 7 ) : 629 - 639.

共引文献67

同被引文献317

引证文献31

二级引证文献385

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部