期刊文献+

基于相空间重构的神经网络月降水量预测方法 被引量:7

Monthly Precipitation Prediction Method of Neural Network Based on Phase Space Reconstruction
在线阅读 下载PDF
导出
摘要 月降水量的准确预测,对于国民生产、防灾减灾有重大意义。针对月降水量影响因素多,彼此之间关系复杂,预测难度大的特点,为提高预测精度,提出了一种基于相空间重构的BP神经网络月降水量预测方法。对一维月降水量时间序列进行参数提取,重构相空间,得到包含各态历经信息的多维序列,用训练神经网络进行月降水量预测,可以解决神经网络难以确定网络结构的问题。应用于杭州市月降水量预测,实验结果表明,改进方法具有较高的预测准确度,可以为干旱洪涝灾害预测提供依据。 Accurately prediction of monthly precipitation has significant meaning for the national production, dis- aster prevention and mitigation. Due to so many factors influencing monthly precipitation, the relationship between each other is very complex, and the monthly precipitation prediction is a difficult field in climate prediction. In order to improve the prediction accuracy, a monthly precipitation prediction method was proposed combining phase space reconstruction with BP neural network in this paper. Parameters of one-dimension monthly precipitation time series were extracted, one-dimension precipitation time series was developed to multi-dimension time series with recon- struction of phase space, and the multi-dimension series include ergodic information. It is conducive to the neural network training, and assisted to determine the structure of neural network. Applied to Hangzhou monthly precipitati- on forecasts, the experimental results show that a higher accuracy rate of prediction can be achieved, and provide the basis for drought and floods forecast.
出处 《计算机仿真》 CSCD 北大核心 2014年第1期352-355,共4页 Computer Simulation
基金 江苏省高校优势学科建设工程资助项目(PAPD) 中国气象局软科学研究课题(SK20120146) 南京市产学研资金项目(2012t026) 公益性行业(气象)科研专项资助项目(GYHY201106040)
关键词 相空间重构 神经网络 月降水量 预测 Phase space reconstruction Neural network Monthly precipitation Prediction
作者简介 张颖超(1960-),男(汉族),江苏省沛县人,教授,博士生导师,主要研究方向为复杂系统建模与评估、模糊理论与应用、计算机网络等; 刘玉珠(1989-),女(汉族),河南省睢县人,硕士研究生,主要研究方向为预测技术。
  • 相关文献

参考文献11

二级参考文献134

共引文献288

同被引文献75

  • 1CHEN Baohua1, LI Jianping1,2 & DING Ruiqiang2 1. College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China,2. State Key Laboratory of Numerical Modeling for Atmospheric Science and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China.Nonlinear local Lyapunov exponent and atmospheric predictability research[J].Science China Earth Sciences,2006,49(10):1111-1120. 被引量:21
  • 2卢峥,史习智,王学军.建筑工程中手写体常用数学符号的神经网络识别[J].模式识别与人工智能,1995,8(4):363-365. 被引量:6
  • 3丁瑞强,李建平.误差非线性的增长理论及可预报性研究[J].大气科学,2007,31(4):571-576. 被引量:34
  • 4XU Ying-yue, QI Hai-rong. Distributed computing paradigms for collabo-rative signal and information processing in sensor networks [ J]. Journal of Parallel and Distributed Computing,2004,64 (8): 945-959.
  • 5JonathanDC,ChanKS.时间序列分析及应用[M].北京:机械工业出版社,2010:145-152.
  • 6Zorin D, Peter S. Subdivision for modeling and animation [ EB/ OL]. [ 2000-12-06 ]. http ://mrl. nyu. edu/- dzrin/sig00eurse/.
  • 7Dyn N. Subdivition scheme in computer-aided geometric design [J]. Advances in Numerical,1992,2:36-104.
  • 8Hwang J R,Chen S M, Lee C H. Handing forecasting problems u- sing fuzzy time series [ J ]. Fuzzy Sets and Systems, 1998,100:217-228.
  • 9SinghS R. A computational method of forecasting based on high- order fuzzy time series[J]. Expea Systems with Applications, 2009,36:10551-10559.
  • 10Singh S R. A computational method of forecasting based on fuzzy time series[ J]. Mathematics and Computers in Simulation ,2008, 79:539-554.

引证文献7

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部