期刊文献+

无线传感器网络数据的迭代凸优化重构

Wireless Sensor Networks Data Recovery Based on Iterative Convex Optimization
在线阅读 下载PDF
导出
摘要 为提高弱相关性网络数据压缩感知的可靠性和有效性,提出一种基于迭代凸优化的网络数据重构方法。该方法利用多次凸优化算法共同重构相关性较弱的网络数据,在每次运行凸优化算法后,对已重构出的数据向量元素进行加权以降低权值,而使其他的数据向量元素在下次凸优化中得到重构。与以往的压缩感知重构方法相比,迭代凸优化重构可在网络数据相关性较弱的情况下保证重构准确度。仿真实验验证了所提方法的正确性。 For improving the reliability of Compressed Sensing (CS) reconstruction algorithms for Wireless Sensor Network (WSN) data under weak correlation, an iterative convex optimization based recovery algorithm is proposed in this paper. The iterative algorithm reconstructs the coefficients by several convex optimizations and the weights of the nonzero signal coefficients which is identified in early iterations is down-weighted in order to allow more sensitivity for identifying the remaining small nonzero signal coefficients. Compared with the existed algorithm for network data recovery, the algorithm can ensure the accuracy of recovery under weak correlation. The performance of the algorithm is validated by using simulations.
作者 常国锋 张军
出处 《电视技术》 北大核心 2013年第9期99-102,122,共5页 Video Engineering
关键词 无线传感器网络 压缩感知 相关性 迭代凸优化 wireless sensor network compressed sensing correlation iterative convex optimization
作者简介 常国锋(1978-),讲师,硕士,主研无线传感器网络; 张军(1982-),讲师,硕士,主研计算机应用等。
  • 相关文献

参考文献8

  • 1周林,陈扬扬.无线传感器网络中数据汇聚方案的研究[J].电视技术,2012,36(13):71-73. 被引量:5
  • 2DONOHO D. Compressed sensing [ J ]. IEEE Trans. Information Theo- ry,2006,52(4) : 1289-1306.
  • 3CANDES E. Compressive sampling [C]//Proc. International Congress of Mathematicians. Madrid, Spain : [ s. n. ] ,2006 : 1433-1452.
  • 4CANDES E,ROMBERG J,TAO T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information [ J ]. IEEE Trans. Information Theory,2006,52(4) :489-509.
  • 5石光明,刘丹华,高大化,刘哲,林杰,王良君.压缩感知理论及其研究进展[J].电子学报,2009,37(5):1070-1081. 被引量:717
  • 6CHEN S, DONOHO D, SAUNDERS M. Atomic decomposition by basis pursuit [ J]. SIAM Journal on Scientific Computing, 1999,20( 1 ) :33-61.
  • 7KIM S, KOH K, LUSTIG M, et al. An interior-point method for large- scale 11 regularized least squares [ J ]. IEEE Journal of Selected Topics in Signal processing,2007,1 (4) :606-617.
  • 8LEE S, PATTEM S, SATHIAMOORTHY M, et al. Compressed sensing and routing in multi-hop networks [ R ]. Southern California: University of Southern California,2009.

二级参考文献93

  • 1张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报,2006,51(6):628-633. 被引量:71
  • 2R Baraniuk.A lecture on compressive sensing[J].IEEE Signal Processing Magazine,2007,24(4):118-121.
  • 3Guangming Shi,Jie Lin,Xuyang Chen,Fei Qi,Danhua Liu and Li Zhang.UWB echo signal detection with ultra low rate sampling based on compressed sensing[J].IEEE Trans.On Circuits and Systems-Ⅱ:Express Briefs,2008,55(4):379-383.
  • 4Cand,S E J.Ridgelets:theory and applications[I)].Stanford.Stanford University.1998.
  • 5E Candès,D L Donoho.Curvelets[R].USA:Department of Statistics,Stanford University.1999.
  • 6E L Pennec,S Mallat.Image compression with geometrical wavelets[A].Proc.of IEEE International Conference on Image Processing,ICIP'2000[C].Vancouver,BC:IEEE Computer Society,2000.1:661-664.
  • 7Do,Minh N,Vetterli,Martin.Contourlets:A new directional multiresolution image representation[A].Conference Record of the Asilomar Conference on Signals,Systems and Computers[C].Pacific Groove,CA,United States:IEEE Computer Society.2002.1:497-501.
  • 8G Peyré.Best Basis compressed sensing[J].Lecture Notes in Ccmputer Science,2007,4485:80-91.
  • 9V Temlyakov.Nonlinear Methods of Approximation[R].IMI Research Reports,Dept of Mathematics,University of South Carolina.2001.01-09.
  • 10S Mallat,Z Zhang.Matching pursuits with time-frequency dictionaries[J].IEEE Trans Signal Process,1993,41(12):3397-3415.

共引文献720

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部