期刊文献+

基于差分演化的自适应参数控制蚁群算法 被引量:7

Adaptive Parameter Control Ant Colony Algorithm Based on Differential Evolution
在线阅读 下载PDF
导出
摘要 蚁群算法存在对参数的依赖、早熟和停滞等缺点但具有与其他算法容易结合的特点,据此,将差分演化算法应用到蚁群算法的参数选取中,提出一种改进的蚁群算法。将蚁群算法的参数作为差分演化算法解空间的向量元素,在自适应地寻找蚁群算法最优参数组合的同时求解问题的最优解。改进算法对蚁群算法中的参数进行自适应调整,可避免大量盲目的测试,扩大蚁群算法的搜索空间,提高全局搜索能力。在典型的旅行商问题上进行对比实验,结果验证了改进算法的优化性能高于传统的蚁群算法。 Aiming at the phenomena such as the dependence on parameter control,precocity and stagnation of Ant Colony Algorithm(ACA),and the character that ACA is easily combined with other algorithms,the Differential Evolution(DE) algorithm is put into making decision of choosing the ACA's parameters.A new adaptive ACA is proposed,named DEAS.This algorithm regards the parameters of ACA as the elements of DE algorithm's solution vector and adaptively finds the optimal combination of parameters,and the optimal solution for solving the problem.The new algorithm effectively overcomes the influence of control parameters of ACA and decreases the numbers of useless experiments.It is adaptive,good at global-search and prevents the degradation of populations.The comparison with the basic ACA indicates DEAS improves the performance significantly.With some appropriate attempts the algorithm can also be used to solve other combinatorial optimization problems.
作者 崔娇 黄少荣
出处 《计算机工程》 CAS CSCD 北大核心 2011年第6期190-192,共3页 Computer Engineering
关键词 差分演化 蚁群算法 旅行商问题 Differential Evolution(DE) Ant Colony Algorithm(ACA) Traveling Salesman Problem(TSP)
作者简介 崔娇(1988-),女,本科生,主研方向:人工智能;E-mail:cuijiao@mai12.sysu.edu.cn 黄少荣,讲师、硕士
  • 相关文献

参考文献6

  • 1Zhan Zhihui, Zhang Jun. Adaptive Particle Swarm Optimization[J]. IEEE Trans. on System, Man, and Cybernetics, 2009, 39(6): 1362- 1381.
  • 2Colorni A, Dorigo M, Theraulaz G Swarm Intelligence: From Natural to Artificial Systems[M]. New York, USA: Oxford University Press, 1999.
  • 3Storn R, Price K. Differential Evolution- A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces[J]. Journal of Global Optimization, 1997, 11(4): 341-359.
  • 4刘利强,戴运桃,王丽华.蚁群算法参数优化[J].计算机工程,2008,34(11):208-210. 被引量:26
  • 5Ronkkonen J, Kukkonen S, Price K V. Real-parameter Optimization with Differential Evolution[C]//Proc. of IEEE Congress on Evolutionary Computation. [S. 1.]: IEEE Press, 2005: 506-513.
  • 6Dorigo M, Maniezzo V, Colorni A. The Ant System: Optimization by a Colony of Cooperating Agents[J]. IEEE Trans. on System, Man, and Cybernetics, 1996, 26(1): 1-13.

二级参考文献5

  • 1叶志伟,郑肇葆.蚁群算法中参数α、β、ρ设置的研究——以TSP问题为例[J].武汉大学学报(信息科学版),2004,29(7):597-601. 被引量:157
  • 2Dorigo M, Maniezzo V, Colorni A. Ant System: Optimization by a Colony of Cooperating Agent[J]. IEEE Transactions on Systems, Man and Cybernetics, 1996, 260): 29-41.
  • 3Dorigo M, Gambardella L M. Ant Colony System: A Cooperative Learning Approach to the Traveling Salesman Problem[J]. IEEE Transactions on Evolutionary Computation, 1997, 41(1): 53-66.
  • 4Kennedy J, Eberhart R C. Particle Swarm Optimization[C]// Proceedings of IEEE International Conference on Neural Networks. Piscataway, USA:[s. n.], 1995.
  • 5詹士昌,徐婕,吴俊.蚁群算法中有关算法参数的最优选择[J].科技通报,2003,19(5):381-386. 被引量:157

共引文献25

同被引文献51

  • 1杨洁,杨胜,曾庆光,李仁发.基于信息素强度的蚁群算法[J].计算机应用,2009,29(3):865-867. 被引量:7
  • 2周贤伟,刘宾,覃伯平.无线传感器网络的路由算法研究[J].传感技术学报,2006,19(2):463-467. 被引量:25
  • 3沈波,张世永,钟亦平.无线传感器网络分簇路由协议[J].软件学报,2006,17(7):1588-1600. 被引量:267
  • 4支成秀,梁正友.融合粒子群优化算法与蚁群算法的随机搜索算法[J].广西科学院学报,2006,22(4):231-233. 被引量:12
  • 5黄翰,郝志峰,吴春国,秦勇.蚁群算法的收敛速度分析[J].计算机学报,2007,30(8):1344-1353. 被引量:72
  • 6Colorni A, Dorigo M, Theraulaz G. Swarm intelligence: From natural to artificial systems [M] . New York: Oxford Universyty Press, 1999.
  • 7Kennedy J, Eberhart R. Particle Swarm Optimization [R] . IEEE International Conference on Neural Networks, Piscataway, NJ: IEEE Service Center, 1995: 1942-1948.
  • 8Angeline P J. Using seIection to improve particle swarm optimization [A] . Proc of the IEEE International Conference on Evolutionary Computation [C] . Piscataway, NJ: IEEE Service Center, 1998:84-89.
  • 9Lovbjerg M, Rasmussen T K, Krink T. Hybrid particle swarm optimizer with breeding and subpopulations [A] . Proceedings of the Genetic and Evolutionary Computation Conference [C] . San Francisco, 2001: 469-476.
  • 10Ratnaweera A, Halgamuge S. Self organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients [J].Evolutionary Computation, 2004, 8 (3): 240-255.

引证文献7

二级引证文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部