期刊文献+

基于稀疏编码和集成学习的多示例多标记图像分类方法 被引量:14

A Multi-instance Multi-label Image Classification Method Based on Sparse Coding and Ensemble Learning
在线阅读 下载PDF
导出
摘要 该文基于稀疏编码和集成学习提出了一种新的多示例多标记图像分类方法。首先,利用训练包中所有示例学习一个字典,根据该字典计算示例的稀疏编码系数;然后基于每个包中所有示例的稀疏编码系数计算包特征向量,从而将多示例多标记问题转化为多标记问题;最后利用多标记分类算法进行求解。为了提高分类器的泛化能力,对多个分类器进行集成。在多示例多标记图像数据集上的实验结果表明所提方法与其它方法相比有更好的性能。 This paper presents a novel multi-instance multi-label image classification method based on sparse coding and ensemble learning. First, a dictionary is learned based on all the instances in the training bags, and the sparse coding coefficient of each instance is calculated according to the dictionary; Second~ a bag feature vector is computed based on all the sparse coding coefficients of the bag. Multi-instance multi-label issue is transformed into multi-label issue that can be solved by the multi-label Mgorithm. Ensemble learning is involved to enhance further the classifiers' generalization. Experimental results on proposed method is superior to the state-of-art methods multi-instance multi-label image data show that the in terms of metrics.
出处 《电子与信息学报》 EI CSCD 北大核心 2013年第3期622-626,共5页 Journal of Electronics & Information Technology
基金 国家自然科学基金(61272282 61173090 61072106 61072108 60970067 60971112 60971128) 国家973计划项目(2013CB329402) 教育部"长江学者和创新团队发展计划"(IRT1170) 高等学校学科创新引智计划(111计划)(B07048)资助课题
关键词 图像分类 多示例多标记学习 稀疏编码 集成学习 Image classification Multi-instance multi-label learning Sparse coding Ensemble learning
作者简介 宋相法:男,1975年生,博士生,讲师,从事图像处理、模式识别、机器学习方面的研究.通信作者:宋相法xiangfasong@163.com 焦李成:男,1959年生,博士生导师,教授,从事自然计算、信号和图像处理、智能信息处理方面的研究.
  • 相关文献

参考文献28

  • 1Yu Jun, Tao Da-cheng, and Wang Meng. Adaptive hypergraph learning and its application in image classification[J]. IEEE Transactions on Image Processing, 2012, 21(7): 3262-3272.
  • 2贾世杰,孔祥维.一种新的直方图核函数及在图像分类中的应用[J].电子与信息学报,2011,33(7):1738-1742. 被引量:13
  • 3亓晓振,王庆.一种基于稀疏编码的多核学习图像分类方法[J].电子学报,2012,40(4):773-779. 被引量:31
  • 4Boutell M R, Luo Jie-bo, Shen Xi-peng, et al.. Learning multi-label scene classification[J]. Pattern Recognition, 2004, 37(9): 1757-1771.
  • 5Song Xiang-fa, Jiao Li-cheng, Yang Shu-yuan, et al.. Sparse coding and classifier ensemble based multi-instance learning for image categorization[J]. Signal Processing, 2013, 93(1): 1-11.
  • 6Zhou Zhi-hua and Zhang Min-ling. Multi-instance multi-label learning with application to scene classification[C]. Proceedings of Neural Information Processing Systems, Vancouver, 2006: 1609-1616.
  • 7Zhou Zhi-hua, Zhang Min-ling, Huang Sheng-jun, et al.. Multi-instance multi-label learning[J]. Artificial Intelligence, 2011, 176(1): 2291-2320.
  • 8Zhang Min-ling and Wang Zhi-jian. MIMLRBF: RBF neural networks for multi-instance multi-label learning[J]. Neurocomputing, 2009, 72(16-18): 3951-3956.
  • 9Zhang Min-ling. A k-nearest neighbor based multi-instance multi-label learning algorithm[C]. Proceedings of International Conference on Tools with Artificial Intelligence Arras, 2010: 207-212.
  • 10Li Ying-Xin, Ji Shui-wang, Kumar S, ct al.. Drosophila gene expression pattern annotation through multi-instance multi-label learning[J]. A CM/ IEEE Transactions on Computational Biology and Bioinformatics, 2012, 9(1): 98-112.

二级参考文献192

  • 1张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报,2006,51(6):628-633. 被引量:71
  • 2Narayanan R M, Xu Y, Hoffmeyer P D, and Curtis J O. Design, performance, and applications of a coherent ultra wide-band random noise radar [J]. Optical Engineering, 1998, 37(6): 1855-1869.
  • 3Donoho D L. Compressed sensing [J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289 1306.
  • 4Baraniuk R G and Steeghs P. Compressive radar imaging [C]. IEEE Radar Conference, Boston, MA, USA, Apr.17-20, 2007 128-133.
  • 5Herman M A and Strohmer T. High-resolution radar via compressed sensing [J]. IEEE Transactions on Signal Processing, 2009, 57(6): 2275-2284.
  • 6Candes E J and Tao T. Decoding by linear programming [J]. IEEE Transactions on Information Theory, 2005, 51(12): 4203-4215.
  • 7Babacan S D, Molina R, and Katsaggelos A K. Bayesian compressive sensing using Laplace priors [J]. IEEETransactions on Image Processing, 2010, 19(1): 53-63.
  • 8Candes E J. The restricted isometry property and its implications for compressed sensing [J]. Comptes rendus del Cademie des Sciences, Scriel, 2008, 346(9-10): 589-592.
  • 9Baraniuk R G, Davenport M A, DeVote R, and Wakin M B. A simple proof of the restricted isometry property for random matrices [J]. Constructive Appro:rimation, 2008, 28(3): 253-263.
  • 10Tropp J A, Laska J N, Duarte M F, Romberg J K, and Baraniuk R G. Beyond Nyquist: efficient sampling of sparse bandlimited signals [J]. IEEE Transactions on Information Theory, 2010, 56(1): 520-544.

共引文献445

同被引文献137

  • 1吴庆涛,邵志清.入侵检测研究综述[J].计算机应用研究,2005,22(12):11-14. 被引量:19
  • 2刘安斐,李弼程,张先飞.基于数据融合的多特征遥感图像分类[J].数据采集与处理,2006,21(4):463-467. 被引量:4
  • 3周志华,杨强.机器学习及其应用[M].北京:清华大学出版社,2011.
  • 4许江涛.多姿态人脸识别研究.南京:东南大学,2006.
  • 5Wang T, Shi P. Kernel grassmannian distances and discriminant analysis for face recogntion from image sets, Pattern Recognition Let- ters, 2009; 30(13) : 1161-1165.
  • 6Wang R, Shan S, Chen X, et al. Manifold-manifold distance with application to face recognition based on image set. IEEE Conference on Computer Vision and Pattern Recognition, Columbus : ltats-Unis, 2008 : 1 -8.
  • 7Wang R, Guo H, Davis L S, et al. Covariance discriminative learn- ing: a natural and efficient approach to image set classification. 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) , Columbus : ltats-Unis, 2012 : 2496-2503.
  • 8侯书东.基于相关投影分析的特征提取研究及在图像识别中的应用.南京:南京理工大学,2012.
  • 9Cevikalp H, Triggs B. Face recognition based on image sets. 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), San Francisco: ltats-Unis, 2010 : 2567-2573.
  • 10Hu Y Q, Mian A S, Owens R. Face recognition using sparse ap- proximated nearest points between image sets. IEEE PAMI, 2012; 34(10) : 1992-2004.

引证文献14

二级引证文献69

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部