期刊文献+

基于空间约束多特征联合稀疏编码的遥感图像标注方法研究 被引量:5

Annotation of Remote Sensing Images Using Spatial Constrained Multi-feature Joint Sparse Coding
在线阅读 下载PDF
导出
摘要 针对稀疏表示分类器不能较好地适应多特征框架的问题,该文提出一种空间约束多特征联合稀疏编码模型,并以此实现遥感影像的自动标注。该方法利用l1,2混合范数正则化多特征编码系数,约束编码系数共享相同的稀疏模式,在保持多特征关联的同时,又不添加过于严格的约束。同时,将字典学习技术扩展到多特征框架中,通过约束字典更新的变换矩阵,解决了字典学习过程丢失多特征关联的问题。另外,针对遥感影像中的空间关系常常被忽略或者利用不充分的不足,还提出了将空间一致性与多特征联合稀疏编码相结合的分类准则,提高了标注性能。在遥感公开数据集与大尺寸卫星影像上的实验证明了该方法的有效性。 In this paper, a novel framework for remote sensing image annotation is proposed based on spatial constrained multi-feature joint sparse coding to extend the sparse representation-based classifier to multi-feature framework. The proposed framework imposed an l1,2 mixed-norm regularization on encode coefficients of multiple features. The regularization encourages the coefficients to share a common sparsity pattern, which preserves the cross-feature information. Inspired by the success of dictionary learning, a novel dictionary learning model is proposed to promote the performance of multi-feature joint sparse coding, while the cross-feature association is preserved by consistent transformation constraint. In addition, spatial dependencies between patches of remote sensing images are useful for annotation task but usually ignored of insufficiently exploited. In this paper, a spatial relation constrained classifier is designed to incorporate spatial coherence into multi-feature sparse coding model to annotate images more precisely. Experiments on public dataset and large satellite images show the discriminative power and effectiveness of the proposed framework.
出处 《电子与信息学报》 EI CSCD 北大核心 2014年第8期1891-1898,共8页 Journal of Electronics & Information Technology
基金 高分对地观测领域学术交流项目(GFZX04060103)资助课题
关键词 遥感图像标注 多特征联合稀疏编码 多特征字典学习 空间信息 Remote sensing image annotation Multi-feature joint sparse coding Multi-feature dictionary learning Spatial information
作者简介 郑歆慰zxw_1020@163.com郑歆慰:男,1987年生,博士生,研究方向为遥感图像处理、计算机视觉. 胡岩峰:男,1976年生,研究员,研究方向为信号与信息处理、图像处理. 孙显:男,1981年生,助理研究员,研究方向为遥感图像处理、人工智能.
  • 相关文献

参考文献27

  • 1宋相法,焦李成.基于稀疏表示及光谱信息的高光谱遥感图像分类[J].电子与信息学报,2012,34(2):268-272. 被引量:73
  • 2Bruzzone L and Carlin L. A multilevel context-based system for classification of very high spatial resolution images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(9): 2587-2600.
  • 3宋相法,焦李成.基于稀疏编码和集成学习的多示例多标记图像分类方法[J].电子与信息学报,2013,35(3):622-626. 被引量:14
  • 4Li F and Perona P. A bayesian hierarchical model for learning natural scene categories[C]. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), San Diego, 2005: 524-531.
  • 5JIANG ChengLong,ZHANG BingChen,ZHANG Zhe,HONG Wen,WU YiRong.Experimental results and analysis of sparse microwave imaging from spaceborne radar raw data[J].Science China(Information Sciences),2012,55(8):1801-1815. 被引量:9
  • 6Lowe D. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004 60(2): 91-110.
  • 7Dai D and Yang W. Satellite image classification via two- layer sparse coding with biased image representation[J]. IEEE Geoscienee and Remote Sensing Letters, 2011, 8(1): 173-176.
  • 8Ma L, Wang C, Xiao B, et al. Sparse representation for face recognition based on discriminative low-rank dictionary learning[C]. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Providence, 2012: 2586-2593.
  • 9Jiang Z, Lin Z, and Davis L. Learning a discriminative dictionary for sparse coding via label consistent K-SVD[C]. Proceedings of International Conference on Computer Vision and Pattern Recognition (CVPR), Colorado Springs, 2011: 1697-1704.
  • 10Donoho L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.

二级参考文献58

  • 1Chan J C W and Paelinckx D. Evaluation of random forest and adaboost tree-based ensemble classification and spectral band selection for ecotope mapping using airborne hyperspectral imagery[J]. Remote Sensing of Environment, 2008, 112(6): 2999-3011.
  • 2Shahshahani B M and Landgrebe D A. The effect of unlabeled samples in reducing the small sample size problem and mitigating the hughes phenomenon[J]. IEEE Transactions on Geoscience and Remote Sensing, 1994, 32(5) 1087-1095.
  • 3Breiman L. Random forests [J]. Machine Learning, 2001, 45(1): 5-32.
  • 4Wright J, Ma Y, Mairal J, et al. Sparse representations for computer vision and pattern recognition [J]. Proceedings of the IEEE, 2010, 98(6): 1031-1044.
  • 5Raina R, Battle A, Lee H, et al. Self-taught learning: transfer learning from unlabeled data[C]. International Conference on Machine Learning, Corvallis, 2007: 759-766.
  • 6Qiao Li-shan, Chen Song-can, and Tan Xiao-yang. Sparsity preserving projection with applications to face recognition [J] Pattern Recognition, 2010, 43(1): 331-341.
  • 7Han Ya-hong, Wu Fei, Zhuang Yue-ting, et al. Multi-label transfer learning with sparse representation[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2010, 20(8): 1110-1121.
  • 8Aharon M, Elad M, and Bruckstein A. K-SVD: an algorithm for designing over-complete dictionaries for sparse representation [J]. IEEE Transactions on Signal Processing, 2006, 54(11): 4311-4322.
  • 9Mairal J, Bach F, Ponce J, ct al.. Online learning for matrix factorization and sparse coding [J]. Journal of Machine Learning Research, 2010, 11(1): 19-60.
  • 10Breiman L. Bagging predictors [J]. Machine Learning, 1996, 24(2): 123-140.

共引文献105

同被引文献45

  • 1BENGIO Y, COURVILLE A, and VINCENT P. Representation learning: a review and new perspectives[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(8): 1798-1828.
  • 2COATES A, NG A Y, and LEE H. An analysis of single-layer networks in unsupervised feature learning[C]. Preceedings of the 14th International Conference on Artificial Intelligence and Statistics, Ft. Lauderdale, 2011: 215-223.
  • 3KRIZHEVSKY A, SUTSKEVER I, and HINTON G E. Imagenet classification with deep convolutional neural networks[C]. Preceedings of the 26th Annual Conference on Neural Information Processing Systems (NIPS), Lake Tahoe, 2012: 1097-1105.
  • 4MASCI J, Meier U, CIREAN D, et al. Stacked convolutional auto-encoders for hierarchical feature extraction[C]. Preceedings of the 21st International Conference on Artificial Neural Networks, Espoo, 2011: 52-59.
  • 5LI Z, FAN Y, and LIU W. The effect of whitening transformation on pooling operations in convolutional autoencoders[J]. EURASIP Journal on Advances in Signal Processing, 2015, 2015(1): 1-11.
  • 6VINCENT P, LAROCHELLE H, Lajoie I, et al. Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion[J]. The Journal of Machine Learning Research, 2010, 11(Dec): 3371-3408.
  • 7YIN H, JIAO X, CHAI Y, et al. Scene classification based on single-layer SAE and SVM[J]. Expert Systems with Applications, 2015, 42(7): 3368-3380.
  • 8ZHANG F, DU B, and ZHANG L. Saliency-guided unsupervised feature learning for scene classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(4): 2175-2184.
  • 9L?NGKVIST M and LOUTFI A. Learning feature representations with a cost-relevant sparse autoencoder[J]. International Journal of Neural Systems, 2015, 25(1): 1-11.
  • 10LIU H L, Taniguchi T, TAKANO T, et al. Visualization of driving behavior using deep sparse autoencoder[C]. Preceedings of the 2014 IEEE Intelligent Vehicles Symposium, Dearborn, 2014: 1427-1434.

引证文献5

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部