期刊文献+

CrAlTiN及CrAlTiSiN纳米多层复合涂层的制备及力学性能 被引量:5

CrAlTiN and CrAlTiSiN Nanocomposite Coatings Deposited by Multi-arc Plasma Deposition
在线阅读 下载PDF
导出
摘要 以金属Cr和AlTi合金为靶材料,在沉积过程中引入SiH4气体,用自行设计的多靶阴极电弧离子镀系统在单晶硅和硬质合金衬底上沉积了CrAlTiN和CrAlTiSiN硬质涂层。通过X射线衍射(XRD)和透射电镜(TEM)分析涂层的组织和形貌,结果表明:衬底偏压和反应气体流量对膜层的力学性能有较大影响,在优化条件下得到CrAlTiN涂层的硬度为29GPa。且CrAlTiSiN涂层为CrSiN和AlTiSiN组成的纳米多层复合涂层,随着SiH4流量的增加,薄膜中的硅含量明显增加,在优化条件下,涂层的显微硬度达到37GPa,摩擦因数为0.58。刀具涂层检测试验表明,涂覆CrAlTiN涂层的铣刀使用寿命可提高3倍,而CrAlTiSiN涂层较CrAlTiN涂层还会进一步提高刀具使用寿命。 CrAlTiN and CrAlTiSiN nanocomposite coatings were synthesized on cemented carbide and Si substrate through a homemade cathodic multiarc plasma deposition system with Cr and AlTi alloy targets. The structural characteristics, morphology were obtained by Xray diffraction (XRD), scanning electron microscope (SEM). Results show that the bias voltage and flow rate of reactant gas significantly affect mechanical properties of the films, and the microhardness of CrAlTiN reaches 29 GPa at optimized conditions.The CrAlTiSiN coatings consisting of multilayer composite with CrSiN and AlTiSiN from the figures of XRD patterns and TEM morphologies. With the increase of SiH4 flow rate, the content of Si elevats and the microhardness reaches the 37 GPa with fricition coefficient of 0.58 at the most optimized parameters. The cutting experiment illustrated that the milling cutter with CrAlTiN coatings is three times longer than that of common tools, while the CrAlTiSiN coatings can further improve the working life the cutter compared with the CrAlTiN.
出处 《中国表面工程》 EI CAS CSCD 北大核心 2013年第1期20-26,共7页 China Surface Engineering
基金 科技部国际合作项目(2011DFR50580) 中国博士后科学基金会项目(2011M501229)
关键词 多弧离子镀 CrAlTiSiN 纳米多层膜 显微硬度 摩擦因数 multi- arc CrA1TiSiN nano- multilayer microhardness friction coefficient
作者简介 付酮程(1988-),男(汉),河南信阳人,硕士生;研究方向:等离子体沉积超硬涂层
  • 相关文献

参考文献1

二级参考文献20

  • 1Li M S, Wang F H. 2003, Surf. Coat. Technol., 167: 197.
  • 2Hong S G, Kwon S H, Kang S W, et al. 2008, Surf. Coat. Technol., 203:624.
  • 3Mei F H, Shao N, Wei L, et al. 2005, Mater. Lett., 59: 2210.
  • 4Fu Y Q, Loh N L, Batchelor A W, et al. 1999, Mater. Sci. Eng. A, 265:224.
  • 5Kim S S, Han J G, Lee S Y. 1998, Thin Solid Films, 334:133.
  • 6Uchid M, Nihir N, Mitsuo A, et al. 2004, Surf. Coat. Technol., 177:627.
  • 7Chim Y C, Ding X Z, Zeng X T, et al. 2009, Thin Solid Films, 517:4845.
  • 8Jeong J J, Hwang S K, Lee C M. 2002, Surf. Coat. Technol., 151:82.
  • 9Lee D B, Kim M H, Lee Y C, et al. 2001, Surf. Coat. Technol., 141:232.
  • 10Yamamoto K, Sato T, Takahara K, et al. 2003, Surf. Coat. Technol., 174:620.

同被引文献67

引证文献5

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部