期刊文献+

基于多面体时空梯度描述子的人体动作识别 被引量:3

Human Action Recognition by Using Polyhedron Model-Based Spatio-Temporal Gradient Descriptor
在线阅读 下载PDF
导出
摘要 为检测出对噪声、镜头缩放更具鲁棒性的反映人体动作特征的时空兴趣点,首先提出了一种新的时空兴趣点检测器;然后以检测出的时空兴趣点为中心,建立基于多面体模型的时空梯度描述子来进一步刻画人体动作在时空上的视觉特征;再基于分层聚类树形结构、利用词袋方法对视频动作特征建立更大且更有效的码书;最后将特征描述子与高层次的人工定义的动作属性相结合,采用隐支持向量机结合坐标下降法求解最终识别模型的局部最优解.在几种典型数据库上的实验结果表明,文中方法具有较高的人体动作识别率. In order to detect the spatio-temporal interest points that illustrate the characteristics of human action and possess robustness to noise and camera zooming,first,a novel detector for spatio-temporal interest points is proposed.Next,by centering on the detected spatio-temporal interest point,a polyhedron model-based spatio-temporal gradient descriptor is created to illustrate the spatio-temporal visual features of human action.Then,a larger and more efficient codebook of video action clips is constructed by using the Bag of Words method based on the hierarchical vocabulary tree.Finally,by integrating the descriptor with the high-level action attributes defined by human,the latent support vector machine combined with coordinate descent is adopted to find the local optimum of the prediction model.Experiments on some typical databases demonstrate that the proposed method achieves high recognition rate of human action.
出处 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2012年第6期56-62,69,共8页 Journal of South China University of Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(2009DFA12870)
关键词 动作识别 时空兴趣点 时空梯度 词袋 action recognition spatio-temporal interest point spatio-temporal gradient Bag of Words
作者简介 姚莉秀(1973-),女,副教授,主要从事模式识别、数据挖掘及其应用研究.E-mail:lxyao@sjtu.edu.cn
  • 相关文献

参考文献17

  • 1Lowe David G. Distinctive image features from scale-in- variant keypoints [ J ]. International Journal of Computer Vision, 2004,60 ( 2 ) : 91 - 110.
  • 2Bay Herbert, Tuytelaars Tinne, Van Gool Luc. SURF : speeded up robust features [ C ]//Proceedings of Euro- pean Conference on Computer Vision. Graz : IEEE, 2006 : 404-417.
  • 3Dollar Piotr, Rabaud Vincent, Cottrell Garrison, et al. Be- havior recognition via sparse spatio-temporal features [ C]//Proceedings of IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tra- cking and Surveillance. Beijing : IEEE, 2005 : 65- 72.
  • 4Willems Geert, Tuytelaars Tinne, Van Cool Luc. An effi- cient dense and scale-invariant spatio-temporal interest point detector [ C ]//Proceedings of European Conference on Computer Vision. Marseille : IEEE,2008 : 650- 663.
  • 5Laptev Ivan. On space-time interest points [ J ]. Interna- tional Journal of Computer Vision,2005,64(2/3) :107-123.
  • 6Scovanner Paul, Ali Saad, Shah Mubarak. A 3-dimensional SIFT descriptor and its application to action recognition [ C ] // Proceedings of International Conference on Multi- media. New York : IEEE ,2007:56-60.
  • 7Le Quoc V, Zou Will Y, Yeung Serena Y, et al. Learning hierarchical invariant spatio-temporal features for action recognition with independent subspace analysis [C] // Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Providence: IEEE,2011:3361- 3368.
  • 8Bregonzio Matteo, Gong Shaogang., Xiang Tao. Recognising action as clouds of space-time interest points [ C ] //Pro- ceedings of IEEE Conference on Computer Vision and Pattern Recognition. Miami : 1EEE ,2009 : 1948-1955.
  • 9Liu Jin-gen, Kuipers Benjamin, Savarese Silvio. Recogni- zing human actions by attributes [ C ] // Proceedings of IEEE Conference on Computer Vision and Pattern Recog- nition. Colorado Springs : IEEE ,2011:3337-3344.
  • 10Nister David, Stewenius Henrik. Scalable recognition with a vocabulary tree [ C] //Proceedings of IEEE Com- puter Society Conference on Computer Vision and Pattern Recognition. New York : IEEE ,2006:2161-2165.

同被引文献16

引证文献3

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部