期刊文献+

高强度运动下的人体动作图像识别方法研究 被引量:6

Research on Human Motion Image Recognition Method under High Intensity Motion
在线阅读 下载PDF
导出
摘要 针对传统动作识别方法一直存在提取成功率较低、提取时间较长等问题,提出了一种基于图像识别的自动跟踪方法对高强度运动下的人体动作进行识别。首先,应用双重卷积理论对高强度下人体动作的原形图像进行阈值分割,对人体动作进行特征提取。然后,结合高斯分布模型对获得的人体动作图像目标、背景和前景信息进行处理,得到人体动作图像背景的高斯分布模型,并采用卡尔曼滤波获取人体动作图像的跟踪轨迹。最后,应用贝叶斯分类理论,对人体动作图像的灰度信息构建目标模型,求解出人体动作图像的最优峰值点,实现多个目标的分割与跟踪。实验结果表明,通过图像识别的自动跟踪方法对人体动作特征提取具有良好的精确,且提取速度显著提高。 Aiming at the problems of low extraction success rate and long extraction time in traditional motion recognition methods,an automatic tracking method based on image recognition was proposed to recognize human motion in high intensity motion.Firstly,double convolution theory was applied to threshold segmentation of the original image of human motion under high intensity,and feature extraction of human motion was carried out.Then,combined with the Gauss distribution model,the target,background and foreground information of human action image were processed,the Gauss distribution model of human action image background was obtained,and the tracking trajectory of human action image was obtained by Kalman filter.Finally,based on Bayesian classification theory,an object model was constructed for gray level information of human action image,and the optimal peak point of human action image was solved to realize segmentation and tracking of multiple targets.The experimental results show that the automatic tracking method of image recognition is accurate and the extraction speed is improved significantly.
作者 张辉 Zhang Hui(Xinlian College,Henan Normal University,Zhengzhou Henan 450000,China)
出处 《计算机仿真》 北大核心 2019年第9期469-472,共4页 Computer Simulation
关键词 图像识别 自动跟踪 高斯分布 卡尔曼滤波 Image recognition Automatic tracking Gaussian distribution Kalman filtering
作者简介 张辉(1981-),男(汉族),河南洛阳人,硕士研究生,讲师,主要研究领域为体育教育训练学。
  • 相关文献

参考文献6

二级参考文献36

  • 1Lowe David G. Distinctive image features from scale-in- variant keypoints [ J ]. International Journal of Computer Vision, 2004,60 ( 2 ) : 91 - 110.
  • 2Bay Herbert, Tuytelaars Tinne, Van Gool Luc. SURF : speeded up robust features [ C ]//Proceedings of Euro- pean Conference on Computer Vision. Graz : IEEE, 2006 : 404-417.
  • 3Dollar Piotr, Rabaud Vincent, Cottrell Garrison, et al. Be- havior recognition via sparse spatio-temporal features [ C]//Proceedings of IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tra- cking and Surveillance. Beijing : IEEE, 2005 : 65- 72.
  • 4Willems Geert, Tuytelaars Tinne, Van Cool Luc. An effi- cient dense and scale-invariant spatio-temporal interest point detector [ C ]//Proceedings of European Conference on Computer Vision. Marseille : IEEE,2008 : 650- 663.
  • 5Laptev Ivan. On space-time interest points [ J ]. Interna- tional Journal of Computer Vision,2005,64(2/3) :107-123.
  • 6Scovanner Paul, Ali Saad, Shah Mubarak. A 3-dimensional SIFT descriptor and its application to action recognition [ C ] // Proceedings of International Conference on Multi- media. New York : IEEE ,2007:56-60.
  • 7Le Quoc V, Zou Will Y, Yeung Serena Y, et al. Learning hierarchical invariant spatio-temporal features for action recognition with independent subspace analysis [C] // Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Providence: IEEE,2011:3361- 3368.
  • 8Bregonzio Matteo, Gong Shaogang., Xiang Tao. Recognising action as clouds of space-time interest points [ C ] //Pro- ceedings of IEEE Conference on Computer Vision and Pattern Recognition. Miami : 1EEE ,2009 : 1948-1955.
  • 9Liu Jin-gen, Kuipers Benjamin, Savarese Silvio. Recogni- zing human actions by attributes [ C ] // Proceedings of IEEE Conference on Computer Vision and Pattern Recog- nition. Colorado Springs : IEEE ,2011:3337-3344.
  • 10Nister David, Stewenius Henrik. Scalable recognition with a vocabulary tree [ C] //Proceedings of IEEE Com- puter Society Conference on Computer Vision and Pattern Recognition. New York : IEEE ,2006:2161-2165.

共引文献43

同被引文献48

引证文献6

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部