期刊文献+

非线性分数阶微分方程边值问题多重正解的存在性 被引量:15

The existence of multiple positive solutions for boundary value problem of nonlinear fractional differential equation
原文传递
导出
摘要 研究了非线性分数阶微分方程边值问题cD0α+u(t)+f(t,u(t))=0,0<t<1,u(0)+u'(0)=u(1)+u'(1)=u'(0)+u″(0)=0多重正解的存在性,其中2<α≤3是一个实数,f:[0,1]×[0,+∞)是连续的,cDα0+为Caputo分数阶导数.通过Green函数的性质,利用不动点定理得出了奇异和非奇异微分方程边值问题多重正解的存在性的一些理论以及奇异问题的唯一解存在性理论,并给出了相应的例证. We study the existence on multiple positive solutions for the nonlinear fractional differential equation boundary value problem cD0+αu(t)+f(t,u(t))=0,0t1, u(0)+u′(0)=u(1)+u′(1)=u′(0)+u″(0)=0, wherecDα0+ is the Caputo fractional derivative and 2α≤3 is a real number,f:×[0,+∞) is continuous.By the properties of the Green function,fixed-point theorems,we give some multiple positive solutions for singular and nonsingular fractional differential equation boundary value problems,and we also give the uniqueness of solution for a singular problem.As applications examples are presented to illustrate the main results.
出处 《云南大学学报(自然科学版)》 CAS CSCD 北大核心 2012年第3期258-264,共7页 Journal of Yunnan University(Natural Sciences Edition)
基金 新疆普通高校重点培育学科基金资助项目(XJZDXK2011004)
关键词 分数阶微分方程 格林函数 正解 不动点定理 边值问题 fractional differential equation Green's function positive solution fixed point theorem boundary value problems
作者简介 刘刚(1986-),男,湖北人,硕士,主要从事微分方程理论及其应用方面的研究. 通迅作者:胡卫敏(1968-),男,江苏人,教授,硕士生导师,主要从事常微分方程边值问题方面的研究.
  • 相关文献

参考文献3

二级参考文献6

共引文献27

同被引文献43

  • 1钟文勇.分数阶微分方程多点边值问题的正解[J].吉首大学学报(自然科学版),2010,31(1):9-12. 被引量:9
  • 2潘军廷,范梦慧,龚伦训.非线性单摆的Jacobi椭圆函数解[J].大学物理,2006,25(11):23-26. 被引量:8
  • 3KRASNOSELSKII M A. Positive solutions of operator equations[M]. Groningen: Noordhoff, 1964 : 1-30.
  • 4MILLER K S,KROSS B. An introduction to the fractional calculus and fractional differential equation[M]. New York: Wiley, 1993:44-184.
  • 5KILBAS A ANATOLY, SRIVASFAVA H HARI, TRUJILLO. Theory and applications of fractional differential equations [M]. Amsterdam, North-Holland Mathematics Studies, Elsevier Science BV, 2006 : 56-90.
  • 6DELBOSCO D, RODINO L. Existence and uniqueness for a nonlinear fractional differential equation[J]. J Math Anal Appl, 1996,204:609-625.
  • 7ZHANG S. The existence of a positive solution for a nonlinear fractional differential equation[J]. J Math Anal Appl,2000,252: 804-812.
  • 8BAI C Z. The existence of a positive solution for a ingular coupled system of nonlinear fractional differential equations[J]. Applied Mathematics and Computation, 2004,150 : 611-62.
  • 9KILBAS A A,TRUJILLO J J. Differential equations of fractional order: methods,results,and problems[J]. J Appl Anal,2001, 78:153-192.
  • 10SAMKO S G,KILBAS A A, MARICHEV O I. Fractional integrals and derivatives:theory and applications[M]. Switzerland: Gordon and Breach Science Publishers, 1993:35-85.

引证文献15

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部