期刊文献+

一类具p-laplacian算子的含积分边界条件的分数阶微分方程边值问题解的存在性 被引量:9

Existence of Solutions for a Class of Fractional Differential Equations with p-Laplacian Operators and Integral Boundary Conditions
原文传递
导出
摘要 利用Green函数的性质、u_0-边界函数、不动点指数定理及锥压缩与锥拉升不动点定理,研究一类具p-laplacian算子的含积分边界条件的微分方程边值问题解的存在性. By using the properties of the Green function, bounded function, the fixed point index theory and the fixed point theorem of cone expansion and compression, the thesis will study the existence of the solutions to the fractional differential equations, which is a class of p-Laplacian operators and integral boundary conditions.
出处 《数学的实践与认识》 北大核心 2016年第16期228-236,共9页 Mathematics in Practice and Theory
基金 新疆维吾尔自治区高校科研计划重点项目(XJEDU2014I040) 新疆维吾尔自治区自然科学基金项目(201318101-14)
关键词 分数阶边值问题 积分边界条件 uo-边界函数 不动点指数定理 锥压缩 与锥拉升不动点定理 fractional boundary value integral boundary conditions fixed point theorem of u0-bounded function fixed point index theorem fixed point theorem of cone expansion and compression
  • 相关文献

参考文献16

  • 1Han Zhen-lai, Lu Hong-ling, Zhang Chao. Positive solutions for value problems of fractional differential equation with generalized p-Laplacian[J]. Applied Mathematics and Computation, 2015(257): 526-536.
  • 2Chai Guo-qing. Positive solutions for boundary value problem of fractional differential equation with p-Laplacian operator[J]. Boundary Value Problems, 2012, 2012: 18-38.
  • 3Zhang Xing-qiu, Wang Lin, Sun Qian. Existence of positive solution for a class of nonlinear frac- tional differential equations with integral boundary conditions and parameter[J]. Applied Mathe- matics and Computation, 2014, 226: 708-718.
  • 4Su Xin-wei. Existence of positive solutions for boundary value problem of nonlinear Fractional Differential Equations[J]. Appl Math J Chinese Univ Set, 1993B, 22(3): 291-298.
  • 5王翠菁,刘文斌,张金陵.非线性分数阶微分方程边值问题解的唯一性[J].河南科技大学学报(自然科学版),2013,34(1):85-88. 被引量:8
  • 6Guo Da-jun. Nonlinear Integral Equations[M].济南,山东科技出版社,1987.
  • 7Krasnosel' skill M A. Positive Solution of Operator Equation[M]. Noordhoff, Groningen, 1964.
  • 8Guo Da-jun, Lashmikantham V. Nonlinear Problems in Abstract Cones[M]. Academic Press, San Diego, 1988.
  • 9Leggett R W, Williams L R. Multiple positive solutions of nonlinear operators on ordered Banach spaces[J]. Indiana Univ Math J, 1979, 28: 673-688.
  • 10王和香,胡卫敏.非线性分数阶微分方程m点边值问题解的唯一性[J].周口师范学院学报,2015,32(5):30-33. 被引量:2

二级参考文献80

  • 1钟文勇.分数阶微分方程多点边值问题的正解[J].吉首大学学报(自然科学版),2010,31(1):9-12. 被引量:9
  • 2刘式达,时少英,刘式适,梁福明.天气和气候之间的桥梁——分数阶导数[J].气象科技,2007,35(1):15-19. 被引量:15
  • 3郭大钧,黄春朝,梁方豪,等.实变函数与泛函分析[M].济南:山东大学出版社,2008:281-282.
  • 4郭大钧,孙经先.抽象空间微分方程[M].济南:山东科学技术出版社,1989.1~110
  • 5Chu J F,Lin X N,Jiang D Q ,et al. Agarwal, Positive Solutions for Second-order Superlinear Repulsive Singular Neumann Boundary Value Problems[ J]. Positivity ,2008,12:555 - 569.
  • 6Yuan C J, Jiang D Q,O' Regan D. Existence and Uniqueness of Positive Solutions for Fourth-order Nonlinear Singular Continuous and Discrete Boundary Value Problems[J]. Applied Mathematics and Computation,2008,203:194 -201.
  • 7Bai Z B. Positive Solutions of Some Nonlocal Fourth-order Boundary Value Problem [ J]. Applied Mathematics and Computation ,2010,215:4191 - 4197.
  • 8辛怡,白雪霏,李勤.分数阶傅里叶联合变换相关在指纹识别中的应用[C]//中国仪器仪表学会医疗仪器分会2010两岸四地生物医学工程学术年会论文集.2010.
  • 9Zhang S Q. Positive Solutions for Boundary Value Problems of Nonlinear Fractional Differential Equations [ J ]. Electronic Journal of Differential Equations ,2006,23 : 1 - 12.
  • 10Bai Z B. On Positive Solutions of a Nonlocal Fractional Boundary Value Problem [ J ]. Nonlinear Analysis ,2010 (72) :916 - 924.

共引文献19

同被引文献26

引证文献9

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部