摘要
利用变量分离法与齐次平衡原理相结合的组合方法研究了一类非线性时间分数阶耦合型扩散系统,获得了该系统的各类精确解,并讨论了这些解的渐进行为以及有界性、稳定性和衰减性等动力学性质.为了能够直观地展示这些解的动力学形态,利用Maple软件绘制出了部分具有代表性的精确解随时间演化的三维坐标图.
A nonlinear time-fractional coupled diffusion system was studied by combining the variable separation method with the homogeneous balance principle.Different kinds of exact solutions of the system were obtained.The gradual behavior of these solutions and their bounded property,stability and damping property were discussed.In order to show their kinetic pattern in a visual way,some representative 3D graphs of the evolution of exact solutions over time were drawn with Maple software.
作者
张慧
谢绍龙
ZHANG Hui;XIE Shaolong(School of Mathematics,Chongqing Normal University,Chongqing 401331;Business School,Yuxi Normal University,Yuxi,Yunnan 653100)
出处
《玉溪师范学院学报》
2019年第3期1-8,共8页
Journal of Yuxi Normal University
基金
国家自然科学基金项目“积分分支法和混合函数法在求解非线性发展方程方面的扩展及应用研究”(项目编号:11361023)
关键词
齐次平衡法
变量分离法
精确解
非线性时间分数阶耦合扩散系统
homogeneous balance method
variable separation method
exact solution
nonlinear time-fractional coupling diffusion system
作者简介
张慧,硕士研究生,研究方向:偏微分方程;谢绍龙,教授,研究方向:偏微分方程.