期刊文献+

MOCVD水平式反应器中热泳力对沉积过程中反应前体浓度分布的影响分析及数值模拟 被引量:4

Analysis and Numerical Simulation of Precursor Concentration Distribution on the Influence of Thermophoretic Force on Depositon Process in Horizontal MOCVD Reactor
在线阅读 下载PDF
导出
摘要 在MOCVD反应器中,针对GaN生长中的TMGa分子,推导出热泳力、热泳速度以及扩散速度的计算公式。在低温区,热泳速度大于扩散速度;在高温区则相反。影响热泳力的主要因素为温度梯度和分子直径。水平式反应器内,粒子同时受到热泳速度和扩散速度的影响。在只考虑组分输运以及包括化学反应等两种情况下,通过改变反应器上壁面温度,模拟得到水平式反应器中热泳力对沉积速率以及反应物粒子浓度分布的影响。并与文献中的实验数据对比,验证了模拟结果的正确性。结果显示,由于热泳力的影响,在相同操作条件下高温区H2等小直径粒子的质量分数增大、TMGa和NH3等大分子粒子的质量分数减小。从提高生长速率的角度,需减小上下壁面温度梯度;从沉积均匀性的角度,应使到达下游的反应粒子数增多,故需增大上下壁面温度梯度。 In this study,the expressions for thermophoretic force,thermophoretic velocity and diffusion velocity for TMGa and NH3 molecules in GaN MOCVD growth were derived.In the colder region,the thermophoretic velocity is faster than the diffusion velocity;in the hotter region,it is the opposite.The thermophoretic force is in proportion to the temperature gradient and particle diameter.In the horizontal MOCVD reactor,the particle motion towards the growth surface is balanced by thermophoretic velocity and diffusion velocity.Considering the case of gas transport only and the case including chemical reactions,and by varying the ceiling temperature,the influence of thermophoretic force on the deposition rate and the concentration distribution are numerically simulated.By comparing the simulation results with the experimental values from literature,good correspondence is obtained.The results show that due to the influence of thermophoretic force,near the hot region,the molar fraction of small molecules such as H2 increases,and the molar fractions of large molecules such as TMG and NH3 decrease.To increase the growth rate,more TMGa molecules are required to arrive the substrate.Consequently,the temperature gradient needs to be decreased so that to decrease the thermophoretic force.On the other hand,to increase the deposition uniformity,more TMGa molecules need to reach the downstream of the reactor,thus the temperature gradient need to be increased so that to repel the TMGa molecules strongly by the thermophoretic force.
出处 《人工晶体学报》 EI CAS CSCD 北大核心 2011年第4期1033-1038,共6页 Journal of Synthetic Crystals
基金 国家自然科学基金(No.60376006) 江苏省研究生创新计划项目(CX10B_260Z)
关键词 MOCVD 热泳力 温度梯度 生长速率 数值模拟 MOCVD GaN thermophoretic force numerical simulation
作者简介 于海群(1981-),男,山东省人,博士研究生。E—mail:hiqun@hotmail.com 通讯作者:左然,教授,博导。E-mail:hiqun@hotmail.com
  • 相关文献

参考文献17

  • 1Jayaraj S. Finite Difference Modeling of Natural Convection Flow with Thermophoresis[ J]. International Journal of Numerical Methods for Heat & Fluid Flow,1999, 9(6) :692-704.
  • 2Goren S L. Thermophoresis of Aerosol Particles in the Laminar Boundary Layer on a Flat Plate[ J]. Journal of Colloid and lnterface Science, 1977, 61 ( 1 ) :77-85.
  • 3Homsy G M, Geyling F T, Walker K L. Blasius Sties for Termophoretic Deposition of Small Particles[ J]. Journal of Colloid and Interface Science, 1981,83(2) : 495-501.
  • 4Epstein M, Houser G M, Henry R E. Thermophoretic Deposition of Particles in Natural Convection Flow from a Vertical Plate[ J ]. Journal of Heat Transfer, 1985,107(2) :272-276.
  • 5Eversteyn F C, Sovefin P J. A Stagnant Layer Model for the Epitaxial Growth of Silicon from Silane in a Horizontal Reactor[ J]. J. Electrochem. Soc. ,1970,117(7) :925-931.
  • 6Fotiadis D I. Thermophoresis of Solid Particles in Horizontal Chemical Vapor Dcpositon Reactors[ J ]. Journal of Crystal Growth, 1990,102 (4) : 743 -761.
  • 7Yakovlev E V, Talalev R A, Segal A S, et al. Hydrogen Effects in III-nitride MOVPE[J]. Journal of Crystal Growth, 2008,310 (23) :4862-4866.
  • 8Jasik A, Wnuk A, Gaca J. The Influence of The Growth Rate and V/Ill Ratio on The Crystal Quality of InGaAs/GaAs QW Structures Grown by MBE and MOCVD Methods[ J]. Journal of Crystal Growth, 2009,311 (19) :4423-4432.
  • 9Guarneros C, Sanchez V. GaN Buffer Layer Growth by MOCVD Using a Thermodynamic Non-equilibrium Model[ J ]. Vacuum, 2010,84(10) : 1187-1190.
  • 10http ://aerosol. ees. ufl. edu/default, htm.

二级参考文献20

  • 1徐谦,左然,张红.反向流动垂直喷淋式MOCVD反应器设计与数值模拟[J].人工晶体学报,2005,34(6):1059-1064. 被引量:13
  • 2Hitchman M L,Jensen K F,Eds.Chemical Vapor Deposition[M].London:Academic Press,1993.
  • 3Fotiadis D,Kieda S,Jensen K F.Transport Phenomena in Vertical Reactors for Metalorganic Vapor Phase Epitaxy:Ⅰ.Effects of Heat Transfer Characteristics,Reactor Geometry and Operating Conditions[J].Journal of Crystal Growth,1990,102:441-470.
  • 4Cho W K,Choi D H.Optimization of a Horizontal MOCVD Reactor for Uniform Epitaxial Layer Growth[J].International Journal of Heat and Mass Transfer,2000,43:1851-1858.
  • 5Weyburne D W,Ahern B S.Design and Operating Considerations for a Water-cooled Close-spaced Reactant Injector in a Production Scale MOCVD Reactor[J].Journal of Crystal Growth,1997,170:77-82.
  • 6Breiland W G,Coltrin M E,Creighton J R,et al.Organometallic Vapor Phase Epitaxy (OMVPE)[J].Materials Science and Engineering,1999,R24:241-274.
  • 7Liu Y,Chen H X,Fu S.CFD Simulation of Flow Patterns in GaN-MOCVD Reactor[J].Chinese Journal of Semiconductors,2004,25(12):1639-1646(in Chinese).
  • 8FLUENT 6.2 User's Guide[M].Fluent Inc.,2005.
  • 9Jensen K F,Einset E O,Fotiadis D L.Flow Phenomena in Chemical Vapor Deposition of Thin Films[J].Annual Review Fluid Mechanics,1991,23:197-232.
  • 10Panton R L.Incompressible flow[M].John Wiley and Sons,Inc,1984.

共引文献9

同被引文献30

  • 1张禹,王克昌,张荣,谢自力,韩平.GaN MOCVD生长机制的量子化学计算[J].材料导报,2007,21(9):127-129. 被引量:3
  • 2Stringfellow G I3. Orangometallic vapor-phase epitaxy: Theo- ry and praetice[M]. New York: Academic Press, 1999.
  • 3Hardtdegen H, Kaluza N. MOVPE process for horizontal reactors with reduced parasitic deposition [J]. J Cryst Growth, 2004,272 : 407.
  • 4Akira Hirako, Kazuhiro Ohkawa. Formation of polymers in TMG/NH3/H2 system under GaN growth [J]. J Cryst Growth, 2006,289 : 428.
  • 5Yakovlev E V, Talalaev R A, Kaluza N, et al. Influence of the reactor inlet configuration on the A1GaN growth efficien- cy [J]. J Cryst Growth,2007,298:413.
  • 6Chien-Cheng Yang, Chuag-Kuei Huang, Gou-Chung Chi. Growth and characterization of GaN by atmosphere pressure metalorganic chemical-vapor deposition with a novel sepa- rate-flow reactor [J]. J Cryst Growth, 1999,200:39.
  • 7Sengupta D, Mazumder S. Comhined ab initio quantum che- mistry and computational fluid dynamics calculations for pre- diction of gallium nitride growth [J]. J Cryst Growth,2005, 279:369.
  • 8Theodoropoulos C, Mountziaris T J. Design of gas inlets for the growth of gallium nitride by metalorganic vapor phase epitaxy [J]. J Cryst Growth, 2000,217 : 65.
  • 9Cai D, Zheng L L, Zhang H, et al. Modeling of gas phase and surface reactions in an aluminum nitride growth system [J]. J Cryst Growth,2006,293:136.
  • 10Parkh R P, Adomaitis R A. An overview of gallium nitride growth chemistry and its effect on reactor design: Applica- tion to a planetary radial-flow CVD system [J]. J Cryst Growth, 2006,286 (2) : 259.

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部