期刊文献+

基于近红外光谱技术与支持向量机的苜蓿秋眠类型测定研究 被引量:3

Study on Estimation of Fall Dormancy in Alfalfa by Near Infrared Reflectance Spectroscopy and Support Vector Machine Model
在线阅读 下载PDF
导出
摘要 提出了一种基于近红外光谱分析技术快速无损测定苜蓿秋眠类型的新方法。应用近红外光谱漫反射技术测定苜蓿样本的光谱并对其进行主成分分析(PCA),根据主成分的累积贡献率选取前10个主成分建立支持向量机(SVM)分类模型,并对其参数及核函数类型进行了详细的分析和讨论。试验结果表明,当c=0.339 2,g=32时,测试集的预测准确率可达98.182%,可以作为初步测定苜蓿秋眠类型的手段之一。同时,与主成分回归分析、偏最小二乘法、BP神经网络、LVQ神经网络等方法相比较的结果表明,PCA-SVM模型可以有效地解决小样本问题,且可以避免陷入局部极小。 The present study proposes a new approach to producing accurate estimates of fall dormancy(FD) in alfalfa in a rapid manner.Using near infrared spectroscopy,the approach produces results fast without causing damage to samples.Near infrared reflectance spectroscopy was applied to measuring the spectra of samples.Then principal component analysis(PCA) was conducted on the measurements.The top ten principal components were selected based on their cumulative contribution rates to build a support vector machine(SVM) model.Detailed analysis and discussions were conducted over their parameter and kernel classifications.The experiment found that when c=0.339 2 and g=32,the accuracy of the predictions of the test set can reach 98.182%.Therefore the approach can estimate the FD in alfalfa in a rapid and accurate manner.Moreover,it was compared with other approaches such as principal component regression,partial least squares regression,BP neural networks,and LVQ neural networks.The comparisons have shown that the PCA-SVM model can effectively address the small-sample-size problem and avoid local minimum.
出处 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2011年第6期1510-1513,共4页 Spectroscopy and Spectral Analysis
基金 国家(863计划)项目(2008AA10Z149) 国家科技支撑项目(2008BADB3B 2006BAD01A19)资助
关键词 苜蓿秋眠性 近红外光谱 主成分分析 支持向量机 Fall dormancy in alfalfa Near infrared spectroscopy Principal component analysis Support vector machine
作者简介 王红柳,女,1983年生,北京林业大学草地资源与生态实验室硕士研究生 通讯联系人e-mail:luxinshi304@126.com
  • 相关文献

参考文献13

二级参考文献43

共引文献265

同被引文献56

引证文献3

二级引证文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部