期刊文献+

支持向量机在苹果分类的近红外光谱模型中的应用 被引量:46

Application of support vector machine to apple classification with near-infrared spectroscopy
在线阅读 下载PDF
导出
摘要 建立了一套苹果近红外光谱采集装置来减少因苹果的部位差异性而造成的试验误差。采用一种新的机器学习算法——支持向量机(SVM)建立不同产地、不同品种苹果的近红外光谱分类模型。通过选定RBF函数作为核函数,并确定合适的光谱预处理方法和核函数中惩罚系数C、正则化系数γ,使得所建立的不同品种苹果分类模型的回判识别率和预测识别率均达到100%,不同产地苹果分类模型的回判识别率为87%,预测识别率为100%,与传统的判别分析法相比其预测识别精度提高5%左右。结果表明,支持向量机可以建立高精度的苹果近红外光谱分类模型。 An apple NIR Spectroscopy acquisition device was developed to diminish experimental errors in apple clasification. To improve and simplify the prediction model of classification, a new machine learning method called Support Vector Machine (SVM) was used to build near infrared (NIR) spectrum classification models for apples from different production areas and of different varieties. By choosing RBF as the core function, the suitable preprocessing method, penalty coefficient C and normal coefficient y, for the model were determined. The classification accuracies for training set and test set of the SVM model for different apple varieties were both 100%, while those of the apples from origin areas were 87% and 100%, respectively. Compared with the discrimination analysis model, the SVM models' accuracy increased by about 5%. The results show that SVM has a perfect performance in establishing the NIR models for apple classification.
出处 《农业工程学报》 EI CAS CSCD 北大核心 2007年第4期149-152,共4页 Transactions of the Chinese Society of Agricultural Engineering
基金 国家高技术"863"项目(2002AA248051) 国家自然科学基金项目(30370813) 教育部博士点基金(20040299009)
关键词 支持向量机 近红外光谱 苹果 分类 support vector machine near-infrared spectrum apple classification
作者简介 赵杰文,博士,教授,博士生导师,主要研究方向为农畜产品物料特性及无损检测技术.镇江 江苏大学食品与生物工程学院,212013.Email:zhao@ujs.edu.cn
  • 相关文献

参考文献17

  • 1Ann Peirs,Lammertyn J,Ooms K,et al.Prediction of the optimal picking date of different apple cultivars by means of VIS/NIR-spectroscopy[J].Postharvest Biology and Technology,2000,21:189-199.
  • 2Ann Peirs,Jeroen Tirry,Bert Verlinden,et al.Effect of biological variability on the robustness of NIR models for soluble solids content of apples[J].Postharvest Biology and Technology,2003,28:269-280.
  • 3Ann Peirs,Nico Scheerlinck,Bart M Nicolai.Temperature compensation for near infrared reflectance measurement of apple fruit soluble solids contents[J].Postharvest Biology and Technology,2003,30:233-248.
  • 4Lammertyn J,Ann Peirs,Josse De Baerdemaeker,et al.Light penetration properties of NIR radiation in fruit with respect to non-destructive quality assessment[ J ].Postharvest Biology and Technology,2000,18:121-132.
  • 5Renfu Lu,Daniel E Guyer,Randolph M Beaudry.Determination of firmness and sugar content of apples using near-infrared diffuse reflectance[J].Journal of Texture Studies,2000,31:615-630.
  • 6Park B,Abbott J A,Lee K J,et al.Near-infrared diffuse reflectance for quantitative and qualitative measurement of soluble solids and firmness of delicious and Gala apples[J].Transactions of the ASAE,2003,46 (6):1721 -1731.
  • 7赵杰文,张海东,刘木华.利用近红外漫反射光谱技术进行苹果糖度无损检测的研究[J].农业工程学报,2005,21(3):162-165. 被引量:75
  • 8刘燕德,应义斌.苹果糖分含量的近红外漫反射检测研究[J].农业工程学报,2004,20(1):189-192. 被引量:29
  • 9褚小立,袁洪福,陆婉珍.近红外分析中光谱预处理及波长选择方法进展与应用[J].化学进展,2004,16(4):528-542. 被引量:579
  • 10Bochereau L,Bourgine P,Palagos B.A method for prediction by combining data analysis and neural networks:Application to prediction of apple quality using near-infrared spectra[J].J Agric Engng Res,1992,51:207-216.

二级参考文献67

共引文献793

同被引文献666

引证文献46

二级引证文献452

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部