期刊文献+

动态贝叶斯网络的一种基于BK的粒子滤波推理算法

Particle Filter for Dynamic Bayesian Networks Inference Based on BK Algorithm
在线阅读 下载PDF
导出
摘要 针对传统粒子滤波(PF)对于动态贝叶斯网络推理中计算的高维问题,提出动态贝叶斯网络的一种基于BK的粒子滤波推理算法(BKPF).BKPF算法融合PF和BK的优点,以弱相关性为指导对DBNs进行分团来降低问题求解的规模,从每个团的状态空间获取粒子并以粒子的因式积形式近似表示系统的状态信度,进而对DBNs的状态空间进行重采样和更新.仿真实验表明,与PF相比,该算法显著提高了计算效率,且推理精度也有一定的提高. To the high dimension problem of traditional particle filter for Dynamic Bayesian Networks inference, based on BK algorithm, a novel particle filter inference algorithm (BKPF) is proposed. The BKPF algorithm combines PF's and BK' s advantages, and the relative clusters of DBNs are created under the guidance of weakly interaction to reduce the dimension of problem solving. Particles are maintained over clusters of state variables, the belief state is represented as a product of particles. Ulteriorly, resampling and update over the entire state spaces of DBNs. Simulation results show that the proposed algorithm improves PF's computational efficiency notably and achieves more precise results.
出处 《小型微型计算机系统》 CSCD 北大核心 2009年第7期1289-1292,共4页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(60575023)资助 安徽省自然基金项目(070412054 070412064)资助 合肥工业大学科学研究发展基金项目(070504F)资助
关键词 粒子滤波 动态贝叶斯网络 BK算法 particle fiher dynamic Bayesian networks BK algorithm
作者简介 王浩,男,1962年生.博士,教授.研究方向为人工智能、数据挖掘和软件工程等,E-mail:davidhoo1985@hotmail.com 胡大伟,男,1985年生,硕士研究生,研究方向为贝叶斯网络的推理和学习 姚宏亮.男,1972年生,博士。研究方向为人工智能和数据挖掘, 何海燕。女,1984年生,硕士研究生,研究方向为基于贝叶斯网络的生物调控网络的构建.
  • 相关文献

参考文献2

二级参考文献14

  • 1胡士强,敬忠良.粒子滤波算法综述[J].控制与决策,2005,20(4):361-365. 被引量:295
  • 2[1]K P Murphy,S Mian.Modelling Gene Expression Data Using Dynamic Bayesian Networks.University of California,Tech Rep,1999
  • 3[2]K P Murphy.Dynamic Bayesian Networks:Representation,Inference and Learning.Berkley,USA:University of California,2002
  • 4[3]A Kuenzer,C Schlick,F Ohmann,et al.An empirical study of dynamic Bayesian networks for user modeling.In:Proc of the UM2001 Workshop on Machine Learning for User Modeling.Gormany:Sonthofen,2001.1-10
  • 5[5]A Doucet,S Godsill,C Andrieu.On sequential Monte Carlo sampling methods for Bayesian filtering.Statistics and Computing,2000,10(3):197-208
  • 6[6]M S Arulampalam,S Maskell,N Gordon,et al.A tutorial on particle filters for online nonlinear/non-gaussian Bayesian tracking.IEEE Trans on Signal Processing,2002,50(2):174-188
  • 7[7]J H Kotecha,P M Djuric.Gaussian particle filtering.IEEE Trans on Signal Processing,2003,51(10):2592-2601
  • 8[8]A Doucet,N de Freitas,K Murphy,et al.Rao-Blackwellised particle filtering for dynamic Bayesian networks.In:Proc of the 16th Conf on Uncertainty in Artificial Intelligence.2000.176-183
  • 9[9]R C Eberhart,J A Kennedy.A new optimizer using particle swarm theory.The 6th Int'l Symp on Micro Machine and Human Science,Nagoya,Japan,1995
  • 10[10]J Kennedy,R C Eberhart.Particle swarm optimization.IEEE Int'l Conf on Neural Networks,Perth,Australia,1995

共引文献298

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部