期刊文献+

进化粒子滤波算法在雷达目标跟踪中的应用 被引量:3

Evolutionary Particle Filter Algorithm In Radar Target Tracking
在线阅读 下载PDF
导出
摘要 进化粒子滤波算法通过模仿生物进化体制,以牺牲大量的计算量为代价增加样本集的多样性,从而较好地缓解了样本贫化现象。将进化粒子滤波算法应用于雷达目标跟踪过程中,变异强度的选择参考系统噪声与观测噪声性质,并通过粒子匮乏现象的强弱选择是否应用进化算法,从而大大减少了计算量。仿真结果显示所提出的算法对雷达目标跟踪有较好的应用价值。 Through imitating biology evolvement,at the cost of much calculation, evolutionary particle filter algorithm ameliorates the diversity of samples set to relieve the effect caused by samples impoverishment.Based on state noise and observation,an advanced evolutionary particle filter algorithm is put forward,and precision is improved.What s more,extent of samples impoverishment determines if to proceed the algorithm,so the calculation mount is largely reduced.Simulation results demonstrate the feasibility of ...
出处 《现代防御技术》 北大核心 2008年第2期115-118,123,共5页 Modern Defence Technology
基金 国家自然科学基金项目(60572038)
关键词 粒子滤波算法 进化算法 目标跟踪 particle filter algorithm evolutionary algorithm target tracking
  • 相关文献

参考文献8

  • 1[1]Gordon N J,Salmond D J.Novel Approach to Nonlinear and Non-Gaussian Bayesian State Estimation[J].Proc of Institute Electric Engineering,1993,140(2):107-113.
  • 2莫以为,萧德云.进化粒子滤波算法及其应用[J].控制理论与应用,2005,22(2):269-272. 被引量:41
  • 3胡士强,敬忠良.粒子滤波算法综述[J].控制与决策,2005,20(4):361-365. 被引量:294
  • 4[4]Farina A,Ristic B,Benvenuti D.Tracking a Ballistic Target:Comparison of Several Nonlinear Filters[J].IEEE Trans,2002,38(3):854-867.
  • 5胡洪涛,敬忠良,李安平,胡士强.非高斯条件下基于粒子滤波的目标跟踪[J].上海交通大学学报,2004,38(12):1996-1999. 被引量:54
  • 6[6]Crisand,Doucet A.A Survey of Convergence Insults on Particle Filtering Methods for Practitioners[J].IEEE Trans on signal Processing,2002,50(3):736-746.
  • 7[7]Kitagawa G.Monto Carlo filter and smoother for nonGaussian nonlinear state space models[J].J of Computational and Graphical Statistics,1996,5(1):1-25.
  • 8[8]Doucet A,Gordon N.Sequential Monte Cado methods in practice[M].New York:Springer-Verlag,2001.

二级参考文献18

  • 1VERMA V, LANGFORD J, SIMMONS R. Non-parametric fault identification for space rovers [ C ]//Proc of the 6 th Int Symposium on Artificial Intelligence, Robotics and Automation in Space. [ s. l.]:[s.n. ] ,2001.
  • 2GORDON N, SALMOND D, EWING C. Bayesian state estimation for tracking and guidance using the bootstrap filter [ J ]. J of Guidance Control and Dynamics, 1995,18(6): 1434 - 1443.
  • 3RUBIN D. Comment on ' The calculation of posterior distributions by data augmentation' by TANNER M A WONG W H [ J ]. J of the American Statistical Association, 1987,82:543- 546.
  • 4GILKS W R, BERZUINI C. Following a moving target-monte carlo inference for dynamic Bayesian models [ J] . J of the Royal Statistical Society B ,2001,63( 1 ): 127 - 146.
  • 5CLAPP T C. December statistical methods for the processing of communiaations data [D].Cambridge,UK:University of Cambridge,2000.
  • 6PITT M, SHEPHARD N.Filtering via simulation:Auxiliary particle filters [ J ]. J of the American Statistical Association, 1999,94 (446):590 - 599.
  • 7HIGUCHI T. Monte Carlo filtering using genetics algorithm operators [J]. J of Statistical Computation and Simulation, 1997,59(1): 1 - 23.
  • 8GORDON N,SALMOND D,SMITH A F M.Novel approach to nonlinear/non-Gaussian Bayesian state estimation [ J ]. IEEE proceedings-F, 1993,140(2): 107 - 113.
  • 9CRISAN D, DOUCET A. A survey of convergence results on particle filtering methods for practitioners [ J ]. IEEE Trans on Signal Processing, 2002,50(3): 736 - 746.
  • 10CASELLA G, ROBERT C. Rao-Blackwellisation of sampling schemes [ J] . Biometrika ,1996,83(1) : 81-94.

共引文献359

同被引文献21

  • 1陈鹏,钱徽,朱淼良.一种快速高斯粒子滤波算法[J].华中科技大学学报(自然科学版),2008,36(S1):291-294. 被引量:9
  • 2GORDON N, SALMOND D, SMITH A. Novel approach to nonlinear non-Gaussian Bayesian state estimation[ J]. IEEE Proceedings on Radar and Signal Processing, 1993, 140: 107-113.
  • 3GODSILL D S, ANDRIE C. On sequential Monte Carlo sampling methods for Bayesian fihering[ J]. Statistics and Computing ,2000, 10( 3 ) : 197-208.
  • 4XU Dongbin, HUANG Lei, LIU Changping. Object tracking using particle filter based on color correlogram[ C]//Second International Symposium on Intelligent Information Technology Application 2008, Shanghai,2008 : 477-480.
  • 5ZHUANG Yan, WANG Wei, XING Ruizhi. Target tracking in colored image sequence using weighted color histogram based particle filter[ C ]//IEEE International Conference on Robotics and Biomimetics 2006, Kunming, 17-20: 1488- 1493.
  • 6LOZA A, PATRICIO M A, GARCIA J, MOLINA J M. Advanced algorithms for real-time video tracking with multiple targets[ C]//lnternational Conference on Control, Automation, Robotics, and Vision. Hanoi, Vietnam, 2008, 17- 20: 125-131.
  • 7GORDON N. A hybrid bootstrap filter for target tracking in clutter[J]. IEEE Trans on AES, 1997, 33 ( 1 ) :353-358.
  • 8ZHAO Z L,LI X R,JILKOV V P.Best Linear Unbiased Filtering with Nonlinear Measurements for Target Tracking[J].IEEE Trans.on Aerospace and Electronic System.2004,40(4):1324-1336.
  • 9ZHAO Z L,LI X R,JILKOV V P.Optimal Linear Unbiased Filtering with Polar Measurement for Target Tracking[C]∥ International Conference on Information Fusion,2002:1527-1534.
  • 10ZHAO Z L,CHEN H M,CHEN G S,et al.Comparison of Several Ballistic Target Tracking Filters[C]∥Ameri-can Control Conference,2006:2197-2202.

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部