期刊文献+

基于随机摄动粒子滤波器的故障预报算法 被引量:6

Fault prediction algorithm based on stochastic perturbation particle filter
原文传递
导出
摘要 针对粒子滤波算法在故障预报中的大计算量和粒子退化问题,提出一种基于随机摄动粒子滤波器的故障预报算法.当粒子退化严重时,对粒子用随机摄动方式进行再采样,一方面可改进样本的多样性,缓解粒子退化;另一方面可缩短再采样时间,减少计算量,从而提高粒子滤波算法的跟踪能力.仿真结果表明该算法可行,能及时准确地对系统故障进行预报. Degeneracy of particles and large computing cost are the main problems when particle filters are applied to fault predictions. Therefore, a fault prediction algorithm based on stochastic perturbation particle filter is proposed to resolve the above problems. The stochastic perturbation re-sampling is used when the degeneracy of particles is serious, which can improve the diversity of samples, ameliorate the degeneracy of particles, shorten the re-sampling time and reduce the computing cost. As a result, the.tracking ability of particle filter is improved. Simulation results demonstrate that the algorithm proposed is valid and the system fault can be predicted accurately and timely.
出处 《控制与决策》 EI CSCD 北大核心 2009年第2期284-288,共5页 Control and Decision
基金 国家自然科学基金重点项目(60736026) 教育部新世纪优秀人才支持计划项目(NCET-07-0144)
关键词 粒子滤波 退化现象 计算量 随机摄动 故障预报 Particle filter Degeneracy phenomenon Computing cost Stochastic perturbation Fault prediction
作者简介 张琪(1980-),女,甘肃庆阳人,博士生,从事滤波理论、故障诊断和故障预报等研究;Correspondent: ZHANG Qi, E-mail zhangqi6530@ 163. com 胡昌华(1966-),男,湖北罗田人,教授,博士生导师,从事控制系统故障诊断、容错控制等研究.
  • 相关文献

参考文献4

二级参考文献63

  • 1[1]BEARD R V. Failure accommodation in linear systems through selfreorganization [ R]. Cambridge Massachusetts: Man Vehicle Lab,MIT, 1971.
  • 2[2]MEHRA R K, PESCHON J. An innovafon approach to fault detection and diagnosis in dynamics [J]. Automatica, 1971,7(5): 637 -640.
  • 3[3]WILLSKY A S. A survey of design methods for failure detection in dynamic systems [J]. Automatica, 1976,12(6): 601-611.
  • 4[4]HIMMELBLAU D M. Fault Detection and Diagnosis in Chemical and Petrochemical Process [ M]. Amsterdam: Elsevier Press, 1978.
  • 5[5]GERTLER J J. Survey of model based failure detection and isolation in complex plants [ J ]. IEEE Control Systems Magazine, 1988, 8(6) :3 - 11.
  • 6[6]ISERMANN R. Process fault detection based on modeling and estimation methods: a survey [J]. Automatica, 1984,20(4):387-404.
  • 7[7]FRANK P M. Fault diagnosis in dynamic systems using analytical and knowledge-based redundancy: a survey and some new results[J]. Automatica, 1990, 26(3):459-474.
  • 8[8]ISERMANN R. Fault diagnosis of machines via parameter estimation and knowledge processing-tutorial paper [J]. Automatica, 1993,29(4): 815 - 835.
  • 9[9]PATTON R, et al. Fault Diagnosis in Dynamic Systems [ M]. New York: Prentice Hall, 1989.
  • 10[14]CHU Chengbin, PROTH J M, WOLFF P. Predictive maintenance:The one-unit replacement model [ J ]. Int J Production Economics,1998, 54(3): 285 - 295.

共引文献351

同被引文献40

引证文献6

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部