期刊文献+

进化粒子滤波算法及其应用 被引量:41

Evolutionary particle filter and its application
在线阅读 下载PDF
导出
摘要 样本贫化现象是应用粒子滤波算法的一个主要障碍,对估计长时间维持不变量的影响尤为严重.通过分析产生该现象的原因,本文引入进化规划算子构成进化粒子滤波算法,增加样本集的多样性而缓解样本贫化现象的影响,改善其估计与跟踪能力,仿真结果显示所提出的算法是可行的. Sample impoverishment phenomenon is a main handicap to particle filter application,especially in those cases to estimate the parameter that remains constant for a long time.Based on the analysis of the causes of sample impoverishment,the evolutionary particle filter is proposed,in which evolutionary programming is introduced.The improved approach relieves the effect caused by samples impoverishment through ameliorating the diversity of samples set.Simulation results demonstrate the feasibility of proposed evolutionary particle filter.
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2005年第2期269-272,共4页 Control Theory & Applications
基金 国家高技术研究发展计划(863计划)资助项目(2002AA412510 2002AA412420).
关键词 粒子滤波算法 样本贫化 进化规划 状态估计 particle filter samples impoverishment evolutionary programming state estimation
  • 相关文献

参考文献11

  • 1VERMA V, LANGFORD J, SIMMONS R. Non-parametric fault identification for space rovers [ C ]//Proc of the 6 th Int Symposium on Artificial Intelligence, Robotics and Automation in Space. [ s. l.]:[s.n. ] ,2001.
  • 2莫以为,萧德云.基于粒子滤波算法的混合系统监测与诊断(英文)[J].自动化学报,2003,29(5):641-648. 被引量:34
  • 3GORDON N, SALMOND D, EWING C. Bayesian state estimation for tracking and guidance using the bootstrap filter [ J ]. J of Guidance Control and Dynamics, 1995,18(6): 1434 - 1443.
  • 4RUBIN D. Comment on ' The calculation of posterior distributions by data augmentation' by TANNER M A WONG W H [ J ]. J of the American Statistical Association, 1987,82:543- 546.
  • 5GILKS W R, BERZUINI C. Following a moving target-monte carlo inference for dynamic Bayesian models [ J] . J of the Royal Statistical Society B ,2001,63( 1 ): 127 - 146.
  • 6CLAPP T C. December statistical methods for the processing of communiaations data [D].Cambridge,UK:University of Cambridge,2000.
  • 7PITT M, SHEPHARD N.Filtering via simulation:Auxiliary particle filters [ J ]. J of the American Statistical Association, 1999,94 (446):590 - 599.
  • 8HIGUCHI T. Monte Carlo filtering using genetics algorithm operators [J]. J of Statistical Computation and Simulation, 1997,59(1): 1 - 23.
  • 9GORDON N,SALMOND D,SMITH A F M.Novel approach to nonlinear/non-Gaussian Bayesian state estimation [ J ]. IEEE proceedings-F, 1993,140(2): 107 - 113.
  • 10CRISAN D, DOUCET A. A survey of convergence results on particle filtering methods for practitioners [ J ]. IEEE Trans on Signal Processing, 2002,50(3): 736 - 746.

二级参考文献8

  • 1Gordon N J, Salmond D J, Smith A F M. Novel approach to nonlinear/non-Gaussian Bayesian state estimation. IEE proceedings-F, 1993,140(2) z 107-113.
  • 2Rubin D B. Comment on ' The calculation of posterior distributions by data augmentation' by Tanner M A, Wong W H. Journal of the American Statistical Association, 1987, 82:543-546.
  • 3Nando de Freitas. Rao-Blackwellised particle filtering for fault diagnosis. IEEE Aerospace Conference Proceedings,2002,4: 1767 -1772.
  • 4Arnaud Doucet, Nando de Freitas, Kevin Murphy, Stuart Russell. Rao-Blackwellised particle filtering for dynamic Bayesian networks. Inz Proceedings of the 16th Conference on Uncertainty in Artificial Intelligence, Stanford, 2000.176-183.
  • 5Jun S Liu, Rong CherL Sequential monte carlo methods for dynamic systems. Journal of American Statistical Association, 1998,93(443) : 1032- 1044.
  • 6Robert V Hogg, Allen T Craig. Introduction to Mathematical Statistics. 4th edition. New Yorkz Maemillian Publishing Co. Inc. ,1978.
  • 7Casella George, Robert Christian P. Rao-Blackwellisation of sampling schemes. Biometrika, 1996, 83( 1 ), 81 - 94.
  • 8Vandi Vernm, John Langford. Reid Simmons Non-parametrlc fault identification for space rovers In International Symposium on Artificial Intelligence and Robotics in Space(iSAIRAS), 2001.

共引文献33

同被引文献421

引证文献41

二级引证文献254

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部