期刊文献+

基于神经元阈上非周期随机共振机制的灰度图像复原研究 被引量:5

Research on Gray-scale Image Restoration Based on Neuron Suprathreshold Aperiodic Stochastic Resonance Mechanism
在线阅读 下载PDF
导出
摘要 传统的图像复原方法在重建被噪声污染的图像时,都只是将噪声作为一种干扰加以消除。当噪声增强、图像信号减弱时,由于受方法本身消噪能力的限制,图像的恢复变得非常困难,因此,基于Hodgkin-Huxley神经元阈上非周期随机共振原理,提出了一种通过自适应调节和添加最优噪声的方法来实现图像随机共振,以取得最佳的复原效果。实验结果表明,该方法对于被噪声污染的灰度图像,特别是对于强噪声背景下的灰度图像,其复原的效果优于传统的方法。由于该方法具有较强的鲁棒性,因此为强噪声背景下的图像复原、目标识别等工程应用提供了一种新的思路。 As to typical noisy image restoration methods, noise is regarded as a disturbed source. As long as noise becomes strong and image signals become weak, it is difficulty to restore noisy image because of the limitation of these methods. Based on theory of suprathreshold aperiodic stochastic resonance in Hodgkin-Huxley model, a new self-adaptive adjusting adding optimum noise image restoration method is proposed. Results indicate that, as to the restoration effect of gray-scale noisy image, especially strong noisy image, this new method is better than other typical methods used. Thus, this study suggests a new approach in engineering application where under strong noise background, such as image restoration and target identification, given that this new method is of good robustness.
出处 《中国图象图形学报》 CSCD 北大核心 2009年第1期77-81,共5页 Journal of Image and Graphics
基金 国家自然科学基金项目(60872090)
关键词 图像复原 Hodgkin.Huxley神经元 阈上非周期随机共振 峰值信噪比 自适应调节 image restoration, Hodgkin-Huxley model, suprathreshold aperiodic stochastic resonance, peak signal-to-noise ratio, self-adaptive adjusting
作者简介 第一作者简介:向学勤(1981~),男。现为杭州电子科技大学模式识别与智能系统专业硕士研究生。主要研究方向为模式识别、神经信息学、生物信息非线性处理。E-mail:xxueq@yahoo.com.cn
  • 相关文献

参考文献7

  • 1Lazzaro D, Montefusco L B. Edge-preserving wavelet thresholding for image denoising [ J ] . Journal of Computational and Applied Mathematics, 2007,210 ( 1-2 ) : 222 -231.
  • 2Wu Ya-dong, Zhu Qing-xin, Sun Shi-xi, et al. Image restoration using variational PDE-based neural network [ J ]. Neurocomputing, 2006,69 ( 16-18 ) :2364-2368.
  • 3Yu Yu-guo, Wang Wei, Liu Feng, et al. Resonance-enhanced signal detection and transduction in the Hodgkin-Huxley neuronal systems [J]. Physics Review E, 2001, 63(2) :1907-1919.
  • 4冷永刚,王太勇,郭焱,范胜波,王永强.基于双稳类随机共振的信息检测[J].电子与信息学报,2005,27(5):734-739. 被引量:17
  • 5Jha Rajib Kumar, Biswas P K, Chatterji B N. Image denoising using stochastic resonance [ A ] . In: Proceedings of the International Conference on Cognition and Recognition ( ICCR'05 ) [ C ] , Mysore, India, 2005: 343-348.
  • 6Piana M, Canfora M, Riani M. Role of noise in image processing by human perceptive system [ J ] . Physics Review E, 2000,62 ( 1 ) : 1104-1109.
  • 7Stocks N. Suprathreshold stochastic resonance in multilevel threshold systems[ J]. Physics Review Letter, 2000, 84(11 ) :2310-2313.

二级参考文献18

  • 1Benzi R, Sutera A, Vulpiana A. The mechanism of stochastic resonance. Physica A, 1981, 14:L453 - 457.
  • 2Gammaitoni L, Hanggi P, et al.. Stochastic resonance. Rev. Mod.Phys., 1998,70(1): 223 - 246.
  • 3Bulsara A R, Gammaitoni L. Turning in to noise. Phys. Today,1996, 49(3): 39 - 45.
  • 4Collins J J, Chow C C, Imhoff T T. Aperiod stochastic resonance in excitable systems. Phys. Rev. E, 1995, 52:R3321 - 3324.
  • 5Godivier X, Chapeau-Blondeau F. Noise-assisted signal transmission in a nonlinear electronic comparator: experiment and theory. Signal Processing, 1997, 56:293 - 303.
  • 6Gammaitoni L. Stochastic resonance in multi-threshold systems.Phys. Lett. A, 1995, 208:315 - 322.
  • 7Collins J J, Chow C C, Imhoff T T. Stochastic resonance without tuning. Nature, 1995, 376:236 - 238.
  • 8Jung P, Hanggi P. Amplification of small signal via stochastic resonance. Phys. Rev. A, 1991, 44(12): 8032 - 8042.
  • 9Galdi V, Pierro V, Pinto I M. Evaluation of stochastic-resonancebased detectors of weak harmonic signals in additive white Gaussian noise. Phys. Rev. E, 1998, 57(6): 6470 - 6478.
  • 10Nicolis G, Prigogine I. Self-Organization in Nonequilibrium Sys.New York: Wiley, 1997, chapter 2 - 3.

共引文献16

同被引文献36

  • 1王鹏伟,李滔,吴秀清.一种基于SVM后验概率的MRF分割方法[J].遥感学报,2008,12(2):208-214. 被引量:7
  • 2冷永刚,王太勇,郭焱,吴振勇.双稳随机共振参数特性的研究[J].物理学报,2007,56(1):30-35. 被引量:55
  • 3Zheng S, Shi W Z, Liu J, et al. Muhisource image fusion method using support value transform[ J]. IEEE Trans. Image Processing,2007,16 (7) : 1831 - 1839.
  • 4Benzi R, Sutera A, Vulpiani A. The mechanism of stochastic resonance[ J]. Journal of Physics A : Mathematical and General, 1981,14 ( 11 ) :453 - 457.
  • 5Das A, Stock N G, Hins E L. Enhanced coding for exponentially distributed signals using supra-threshold stochastic resonance [ J ]. Communications in Nonlinear Science and Numerical Simulation,2009,14 ( 1 ) :223 - 232.
  • 6Sasaki H, Sakane S, Ishida T, et al. Supra threshold stochastic resonance in visual signal detection [ J ]. Behavioral Brain Research ,2008,193( 1 ) :152 - 155.
  • 7Sasaki H, Todorokihara M, Ishida T, et al. Effect of noise on the contrast detection threshold in visual perception[ J ]. Neuroscience Letters, 2006,408 (2) : 94 - 97.
  • 8薛凌云.神经元随机共振机制及其在语音与图像处理中的应用研究.杭州:浙江大学,2008:67—83.
  • 9Stocks N G. Supra-threshold stochastic resonance: an exact result for uniformly distributed signal and noise [ J ]. Physics Letters A ,2001,279( 1 ) :308 - 312.
  • 10Benzi R,Sutera A,Vulpiana A.The mechanism of stochastic resonance[J].Phys A.1981,14:L453-L457.

引证文献5

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部