期刊文献+

基于FHN神经元随机共振的低剂量肺部CT图像增强 被引量:8

Enhancement of Low-dose Lung CT Image Based on Stochastic Resonance of FHN Neurons
在线阅读 下载PDF
导出
摘要 目的研究FitzHugh-Nagumo(FHN)神经元在弱信号检测中的随机共振机制,实现低剂量肺部CT图像的增强。方法本文以低剂量肺部CT影像为例,在验证FHN神经元随机共振能够增强一维含噪信号有用信息的基础上,引入基于FHN神经元随机共振的图像增强方法:分别实现二维CT影像在行方向和列方向上的降维操作,以此作为FHN神经元随机共振的输入序列;FHN神经元的输出信号经过光栅扫描逆过程以及幅值映射放大处理后,通过判别器,完成低信噪比CT影像的增强。结果 FHN神经元随机共振方法增加了图像对比度,凸显影像中的有用信息。结论本文研究为图像增强技术在医学影像中的应用提供了一种有效的新思路。 Objective To study the stochastic resonance mechanism of FitzHugh-Nagumo(FHN) neurons on the weak signal detection,and realize enhancement of low doses of lung CT images.Methods Taking low doses of lung CT images as examples,and on the basis of FitzHugh-Nagumo(FHN) neurons stochastic resonance,image enhancement method was introduced,which enhanced the effective part of noisy and one-dimensional signal.First,the CT image was converted to one-dimensional signals at line direction and column direction by dimension reduction,and was taken as the input signals of FHN neuron.Then,the enhancement of the low-dose CT image was achieved after the processes of inverse raster scanning,amplitude mapping and discrimination to the output signals of FHN neuron.Results The image enhancement method of stochastic resonance based on FHN neurons stretched the contrast of images and highlighted the effective information of images.Conclusion This study provides an effective and brand-new idea for medical image enhancement.
出处 《航天医学与医学工程》 CAS CSCD 北大核心 2012年第2期121-125,共5页 Space Medicine & Medical Engineering
基金 国家自然科学基金资助项目(60872090)
关键词 图像增强 低剂量肺部CT影像 FHN神经元 随机共振 image enhancement low-dose lung CT image FHN neurons stochastic resonance
作者简介 作者简介:王海玲,女,硕士研究生,研究方向为模式识别与智能系统。E-mail:wh106062224@163.com 通讯作者:范影乐fan@hdu.edu.cn
  • 相关文献

参考文献9

  • 1Tomoaki I,Sukru ME,Tsutomu A. Multiphasic contrast-enhanced multidetector-row CT of liver:Contrast-enhancement theory and practical scan protocol with a combination of fixed injection duration and patients' body-weight-tailored dose of contrast material[J].European Journal of Radiology,2006,(02):165-176.doi:10.1016/j.ejrad.2005.11.037.
  • 2Zhang GD,Yan PY,Zhao H. A contrast enhancement algorithm for low-dose CT images based on local histogram equalization[A].Shanghai:IEEE Press,2008.2462-2465.
  • 3Benzi R,Sutera A,Vulpiani A. The mechanism of stochastic resonance[J].Journal of Physics A:Mathematical and General,1981,(11):453-457.doi:10.1088/0305-4470/14/11/006.
  • 4Eltoukhy MM,Faye I,Samir BB. Breast cancer diagnosis in digital mammogram using multiscale curvelet transform[J].Computerized Medical Imaging and Graphics,2010,(04):269-276.doi:10.1016/j.compmedimag.2009.11.002.
  • 5Aihara T,Kitajo K,Nozaki D. Internal noise determines external stochastic resonance in visual perception[J].Vision Research,2008,(14):1569-1573.doi:10.1016/j.visres.2008.04.022.
  • 6Sasaki H,Sakane S,Ishida T. Subthreshold noise facilitates the detection and discrimination of visual signals[J].Neuroscience Letters,2008,(02):255-258.doi:10.1016/j.neulet.2008.03.036.
  • 7陈可,范影乐,李轶.双稳态随机共振机制及其在图像复原中的应用[J].中国图象图形学报,2011,16(7):1170-1177. 被引量:6
  • 8Biton Y,Rabinovitch A,Aviram I. Two mechanisms of spiral-pair-source creation in excitable media[J].Physics Letters A,2009,(20):1762-1767.doi:10.1016/j.physleta.2009.03.030.
  • 9Singh S,Bovis K. An evaluation of contrast enhancement techniques for mammography breast masses[J].IEEE Transactions on Information Technology in Biomedicine,2005,(01):109-119.doi:10.1109/TITB.2004.837851.

二级参考文献3

共引文献5

同被引文献61

  • 1梁晓冰,刘希顺,刘安芝,王博亮.微弱正弦信号在有噪声的FN神经元模型中的传输特性研究[J].国防科技大学学报,2008,30(2):78-82. 被引量:2
  • 2梁军利,杨树元,唐志峰.基于随机共振的微弱信号检测[J].电子与信息学报,2006,28(6):1068-1072. 被引量:27
  • 3张广军,徐健学,王相波,姚宏.FitzHugh-Nagumo神经元模型非阈下响应的随机共振[J].空军工程大学学报(自然科学版),2006,7(4):79-81. 被引量:3
  • 4Pun KSC, Nguyen TQ. Widely linear filter bank equalizer for real STBC [ J]. Signal Processing, 2008, 56 (9) : 4544- 4548.
  • 5Nasri M, Nezamabadi-pour H. Image denoising in the wavelet domain using a new adaptive thresholding function [J]. Neu- roeomputing, 2009, 72(4-6): 1012-1025.
  • 6Villa J, Rodriguez-Vera R, Quiroga JA, et al. Anisotropic phase-map denoising using a regularized cost-function with complex-valued Markov-random-fields [ J]. Optics and Lasers in Engineering, 2010, 48(6) : 650-656.
  • 7Aihara T, Kitajo K,Nozaki 13, et al. Internal noise deter- mines external stochastic resonance in visual perception [ J ]. Vision Research, 2008, 48 (14) : 1569-1573.
  • 8Sasaki H, Sakane S, Ishida T, et al. Suprathreshold stochas- tic resonance in visual signal detection [ J ]. Behavioural Brain Research, 2008, 193( 1 ) : 231-236.
  • 9Nozaki D,Yamamoto Y. Enhancement of stochastic resonance in a FitzHugh-Nagumo neuronal model driven by colored noise [J]. Physics Letters A, 1998, 243(5-6) : 281-287.
  • 10Heneghan C,Chow CC, Collins JJ, et al. Information meas- ures quantifying aperiodic stochastic resonance [J]. Physical Review E, 1996, 54(3) : 2228-2231.

引证文献8

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部