期刊文献+

基于参数可调双稳系统的信息检测

Information Detection Based on Bistable System with Tunable Parameters
在线阅读 下载PDF
导出
摘要 分析了参数可调双稳态系统的输出特性,说明了影响系统输出的主要因素.从系统响应速度的角度阐明了参数调节随机共振的实现机理.对于大参数输入信号,采用连续改变系统参数的方法,寻求合适的系统响应速度以获得最佳系统输出,并对系统输出信号进行恢复,可以得到与输入信号非常接近的波形.通过考察不同系统参数所对应的输出响应与输入信号之间的互相关系数,论证了参数调节随机共振用于大参数信号检测的可行性.利用该方法分别对周期和非周期信号进行检测,得到了较好的结果,从而进一步证明了该方法的有效性和实用性. The output characteristics of bistable system with tunable parameters are analyzed, and the main factors influ- encing system output are illustrated. The parameter-induced stochastic resonance is demonstrated by analyzing the system response speed. In order to detect the input signal with large parameters, the system parameters are changed continuously to achieve optimum system response speed. When the system response speed is suitable for the input signal changing, the best system output can be gotten. Then, by recovering this output signal, the recovery signal which is close to the input signal can be obtained. The correlation coefficients between the input signal and the output response of various system parameters are discussed. It is demonstrated that the parameter-induced stochastic resonance is feasible to be used in signal detection with large parameters. The presented method is used to detect periodic and aperiodic signals, and better results are obtained, proving that the niethod is effective and practical.
出处 《信息与控制》 CSCD 北大核心 2008年第6期729-734,共6页 Information and Control
基金 天津市自然科学基金资助项目(06YFJMJC02200)
关键词 随机共振 双稳态系统 参数调节 信息检测 stochastic resonance bistable system parameter-induced information detection
作者简介 王辅忠(1960-),男,教授.研究领域为物理电子学,光电子信息与非线性系统等. 陈晓霞(1982-),女,硕士生.研究领域为信号处理,非线性系统.
  • 相关文献

参考文献15

  • 1Benzi R, Sutem A, Vulpiani A. The mechanism of stochastic resonance[J]. Journal of Physics A, 1981, 14(11): 453-457.
  • 2Benzi R, Parisi G, Sutera A, et al. Stochastic resonance in climatic-change[J]. Tellus, 1982, 34(1): 10-16.
  • 3Fauve S, Heslot E Stochastic resonance in a bistable system[J]. Physics Letters A, 1983, 97(1-2): 5-7.
  • 4Mitaim S, Kosko B. Adaptive stochastic resonance[J]. Proceedings of the IEEE, 1998, 86(11): 2152-2183.
  • 5Gammaitoni L, Hanggi P, Jung P, et al. Stochastic resonance[J]. Reviews of Modem Physics, 1998, 70(1): 223-287.
  • 6Collins J J, Chow C C, Capela A C, et al. Aperiodic stochastic resonance[J]. Physical Review E, 1996, 54(5): 5575-5584.
  • 7Harmer G P, Davis B R, Abbott D. A review of stochastic resonance: Circuits and measurement[J]. IEEE Transactions on Instrumentation and Measurement, 2002, 51(2): 299-309.
  • 8段江海,宋爱国.双稳系统中非周期随机共振的数值仿真[J].电路与系统学报,2004,9(5):149-152. 被引量:7
  • 9梁军利,杨树元,唐志峰.基于随机共振的微弱信号检测[J].电子与信息学报,2006,28(6):1068-1072. 被引量:27
  • 10林敏,黄咏梅.调制随机共振及其在微弱信号检测中的应用[J].传感器与微系统,2006,25(2):81-82. 被引量:12

二级参考文献46

  • 1胥永刚,张发启,何正嘉.独立分量分析及其在故障诊断中的应用[J].振动与冲击,2004,23(2):104-107. 被引量:46
  • 2冷永刚,王太勇,郭焱,汪文津,胡世广.级联双稳系统的随机共振特性[J].物理学报,2005,54(3):1118-1125. 被引量:26
  • 3沈群,张江陵.一种用于低信噪比微弱信号提取的阻尼触发电路[J].信号处理,1996,12(4):373-377. 被引量:2
  • 4Benzi R, Srutera A, Vulpiani A. The mechanism of stochastic resonance [J]. J Phys A, 1981, 4(11): 453-457.
  • 5Gammaitoni L, H?nggi P, Jung P, et al. Stochastic resonance [J]. Rev Mod Phys, 1998, 70(1): 223-287.
  • 6Collins J J, Chow C C, Imhoff T T. Aperiodic stochastic resonance in excitable systems [J]. Phys Rev E, 1995, 52(4): 3321-3324.
  • 7Godivier X, Chapeau-Blondeau F. Stochastic Resonance in the information capacity of a nonlinear dynamic system [J]. Int J Bifurcation and Chaos, 1998. 8(3): 581-590.
  • 8Fauve S, Heslot F. Stochastic resonance in a bistable system [J]. Phys Lett A, 1983, 97(1~2): 5-9.
  • 9Harmer G P, Davis B R, Abbott D. A review of stochastic resonance: circuits and measurement [J]. IEEE Trans on instrumentation and measurement, 2002, 51(2): 299-309.
  • 10Benzi R, Sutera A, Vulpiana A. The mechanism of stochastic resonance. Physica A, 1981, 14:L453 - 457.

共引文献103

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部