摘要
                
                    参照Feigenbaum搓揉子移位的定义,给出了*积子移位的概念,并通过探讨*积子移位与代换子移位的关系,利用代换子移位的已有结果证明了每个*积子移位都是极小的、惟一遍历的以及在Li-Yorke意义下非混沌且具有零拓扑熵,由此推出每个Feigenbaum搓揉子移位也具有上述性质.
                
                Following Feigenbaum' s kneading subshifts, we introduced the notion of * product subshift under the wider sense. By investigating the relationship between * product subshift and substitution subshift, and by using the known results on substitution subshifts, we proved that every * product subshift is minimal,uniquely ergodic, non-chaotic in the sense of Li and Yorke and has zero topological entropy, from which we deduced that every Feigenbaum' s kneading subshift also exhibits the above properties.
    
    
    
    
                出处
                
                    《吉林大学学报(理学版)》
                        
                                CAS
                                CSCD
                                北大核心
                        
                    
                        2008年第6期1021-1024,共4页
                    
                
                    Journal of Jilin University:Science Edition
     
            
                基金
                    国家自然科学基金(批准号:10771084)
                    吉林师范大学科研启动基金
            
    
    
    
                作者简介
范钦杰(1956~),女,汉族,博士,教授,博士生导师,从事拓扑动力系统的研究,E-mail:fanqinjie@sina.com.cn