摘要
                
                    设f为Feigenbaum映射,亦即函数方程fp(λx)=λf(x)满足一定条件的单峰解.f的搓揉序列为0-1无限序列,f的特征集是临界点轨迹的闭包.本文研究f的性质进而证明.f的搓揉序列是某代换在符号空间中的不动点,f在特征集上的限制是某代换子移位的一个因子.
                
                Let f be a Feigenbaum map, i.e. a unimodal solution satisfying certain conditions of the functional equation f^P(λx) = λf(x) . The kneading sequence of f is a 0-1 infinite sequence and the characteristic set of f is the closure of the orbit of critical point. In this paper, we investigate properties of f and then we prove that the kneading sequence of f is a fixed point of some substitution in a symbolic space and the restriction of f to characteristic set is a factor of some substitution subshift.
    
    
    
    
                出处
                
                    《数学学报(中文版)》
                        
                                SCIE
                                CSCD
                                北大核心
                        
                    
                        2006年第2期399-404,共6页
                    
                
                    Acta Mathematica Sinica:Chinese Series
     
            
                基金
                    国家自然科学基金资助项目(19971035)
                    吉林大学创新基金资助项目(2004C8051)
            
    
    
    
                作者简介
E-mail:liaogf@email.jlu.edu.cn