期刊文献+

基于朴素贝叶斯的风电功率组合概率区间预测 被引量:60

Prediction of Combination Probability Interval of Wind Power Based on Naive Bayes
在线阅读 下载PDF
导出
摘要 为了提高风电功率概率区间预测性能,提出了一种基于朴素贝叶斯的正态指数平滑法和混合滑动核密度估计的组合风电功率区间预测方法。首先,通过朴素贝叶斯分类器建立点预测模型;然后,分别通过正态指数平滑法和混合滑动核密度估计预测误差的概率分布,得出对应的某一置信概率下的预测区间;最后,利用熵权法合理的加权组合正态指数平滑法估计所得预测区间和混合滑动核密度估计所得预测区间,生成最终的风电功率预测区间。研究结果表明:与正态指数平滑法和混合滑动核密度得出的预测区间相比,提出的熵权法加权组合预测可提高区间覆盖率、降低区间平均带宽,证明了该组合概率区间预测方法能同时兼顾可靠性和准确性。论文研究可为风电功率预测提供参考。 In order to improve the performance of predicting the probability interval of wind power, a wind power interval prediction method combining normal exponential smoothing and mixed sliding kernel density estimation is proposed. Firstly, the point prediction model is established by the naive bayesian classifier. Then, the probability distribution of the prediction error is estimated by normal exponential smoothing and mixed sliding kernel density estimation, and the corresponding prediction interval under a certain confidence probability is obtained. Finally, the entropy method is used to reasonably combine the prediction interval of normal exponential smoothing and the prediction interval of mixed sliding kernel density estimation to generate the final wind power prediction interval. The results show that, compared with the normal exponential smoothing and mixed sliding kernel density estimation, the proposed combination prediction method combining with an entropy method can be employed to improve the interval coverage and reduce the average bandwidth of intervals, which proves that the method compromises the reliability and accuracy of the prediction. The research can provide a reference for the prediction of wind power.
作者 杨锡运 张艳峰 叶天泽 苏杰 YANG Xiyun;ZHANG Yanfeng;YE Tianze;SU Jie(Department of Control and Computer Engineering,North China Electric Power University,Beijing 102206,China;Department of Control and Computer Engineering,North China Electric Power University,Baoding 071003,China)
出处 《高电压技术》 EI CAS CSCD 北大核心 2020年第3期1099-1108,共10页 High Voltage Engineering
基金 国家自然科学基金(51677067) 中央高校基本科研业务费专项资金(2018MS27).
关键词 风电功率 区间预测 朴素贝叶斯 指数平滑法 核密度估计 熵权法 wind power interval prediction naive bayesian classifier exponential smoothing kernel density estimation entropy method
作者简介 杨锡运,1973—,女,博士,教授,博导,主要从事新能源发电控制的研究工作,E-mail:yangxiyun916@sohu.com;通信作者:张艳峰,1994—,男,硕士生,主要从事新能源发电与机器学习方面的研究,E-mail:zyf66528@163.com
  • 相关文献

参考文献12

二级参考文献247

  • 1杨秀媛,肖洋,陈树勇.风电场风速和发电功率预测研究[J].中国电机工程学报,2005,25(11):1-5. 被引量:587
  • 2徐文远,张大海.基于模态分析的谐波谐振评估方法[J].中国电机工程学报,2005,25(22):89-93. 被引量:94
  • 3杨文佳,康重庆,夏清,刘润生,唐涛南,王鹏,张丽.基于预测误差分布特性统计分析的概率性短期负荷预测[J].电力系统自动化,2006,30(19):47-52. 被引量:42
  • 4Lexiadis M A, Dokopoulo S P, Samanoglou S H, et al. Short-term forecasting of wind speed and related etectricalpower[J]. Solar Energy, 1998, 63(1): 61-68.
  • 5Li Shuhui, Wunsch D, O'Hair E, et al. Using neural networks to estimate wind turbine power generation [C]//IEEE Power Engineering Society Winter Meeting. Columbus, USA: Power Engineering Society, 2001:977-986.
  • 6Pinson P, Nielsen H A, Moiler J K, et al. Nonparametric probabilistic forecasts of wind power: required properties and evaluation[J]. Wind Engineering, 2007, 10(6): 497-516.
  • 7Gneiting T, Larson K, Westrick K, et al. Calibrated probabilistic forecasting at the stateline wind energy center: the regime-switching space-time method [J]. Journal of the American Statistical Association, 2006(101): 968-979.
  • 8Nielsen H A, Madsen H, Nielsen T S. Using quantile regression to extend an existing wind power forecasting system with probabilistic forecasts[J]. Wind Energy, 2006(9): 95-108.
  • 9Juban J, Fugon L, Kariniotakis G. Probabilistic short-term wind power forecasting based on kernel density estimators [C]//European Wind Energy Conference. Milan, Italy: European Wind Energy Association, 2007: 7-10.
  • 10Pinson P, Kariniotakis G N. Wind power forecasting using fuzzy neural networks enhanced with on-line prediction risk assessment[C]//2003 IEEE Bologna Power Tech Conference. Bologna, Italy: IEEE Power Engineering Society, 2003: 8-15.

共引文献549

同被引文献891

引证文献60

二级引证文献742

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部