期刊文献+

在端点处保持非对称阶参数连续性的Bézier曲线降阶 被引量:1

Degree Reduction of Bézier Curves with Constraints of Asymmetry Parametric Endpoints Continuity
在线阅读 下载PDF
导出
摘要 提出了一种基于受限Jacobi多项式(Constrained Jacobi Polynomial)的Bézier曲线降阶算法,使用该算法获得的降阶曲线具有与原曲线在端点处保持Cr,s参数连续性(r表示在起点位置具有r阶参数连续性,s表示在终点具有s阶参数连续性),它是对2003年由Ahn提出的在端点处保持Ck,k参数连续性的Bézier曲线降阶算法在一般情况下的推广。通过分析在L∞范数误差下误差函数曲线取极值的情况,得出了利用受限Jacobi多项式实现在端点处保持非对称参数连续性的有关性质并给出了试验数据,另外,还讨论了当误差值大于系统给定容差时的细分曲线的计算公式。 A constrained Jacobi polynomial is proposed as an error function of degree reduction of Bézier curve with Cr,s endpoints continuity. The idea is a natural extension of the method proposed by Kim and Ahn (2003). Comparison with the other method of degree reduction of Bézier Curves, More simpler calculation of control point of Bézier curves is achieved with flexible Cr,s endpoints continuity on the condition of the L∞ -norm error function, the subdivision scheme for the Cr,s -constrained degree reduction within given tolerance is also presented.
出处 《工程图学学报》 CSCD 北大核心 2008年第5期89-95,共7页 Journal of Engineering Graphics
基金 江西省教育厅科技计划资助项目(赣教技字2006[36]号 赣教技字2007[27]号)
关键词 计算机应用 Bézier曲线降阶 受限Jacobi多项式 非对称参数连续性 computer application degree reduction of Bézier curve constrained Jacobi polynomial asymmetry parametric continuity
作者简介 徐少平(1976-),男,江西九江人,讲师,博士生,主要研究方向为计算机图形学、机器视觉。
  • 相关文献

参考文献9

  • 1白宝钢,金小刚,冯结青.三次Bézier曲线的自适应降阶[J].计算机辅助设计与图形学学报,2004,16(11):1599-1602. 被引量:8
  • 2满家巨,胡事民,雍俊海,孙家广.Bézier曲线的降阶逼近[J].清华大学学报(自然科学版),2000,40(7):117-120. 被引量:7
  • 3Samuel R Buss. 3D computer graphics- a mathematical introduction with OpenGL [M]. New York: United States of America by Cambridge University Press, 2003. 171-173.
  • 4Matthias Eck. Least squares degree reduction of Bezier curves [J]. Computer Aided Design. 1995, 27(11): 845-851.
  • 5KIM H O, MOON S Y. Degree reduction of Bezier curves by L 1-approximation with endpoint interpolation [J]. Computers Math Applic, 1997, 33(5): 67-77.
  • 6KIM H J, AHN Y J. Good degree reduction of Bezier curves using Jacobi polynomials [J]. Computers and Mathematics with Applications, 2000, 40(10): 1205-1215.
  • 7AHN Y J. Using Jacobi polynomials for degree reduction of Bezier curves with C^k -constraints [J]. Computer Aided Geometric Design, 2003, 20(7): 423-434.
  • 8Hasik Sunwoo. Matrix representation for multi-degree reduction of Bezier curves [J]. Computer Aided Geometric Design, 2005, 22(3): 261-273.
  • 9Hasik Sunwoo, Namyong Lee. A unified matrix representation for reduction of Bezier curves [J]. Computer Aided Geometric Design, 2004, 21(2): 151-164.

二级参考文献21

  • 1Hu S,Tsinghua Sci Technol,1998年,3卷,2期,977页
  • 2Hu S,Chin J Software Res,1997年,4卷,4期,353页
  • 3Hu S,Computer Aided Design,1996年,26卷,125页
  • 4胡事民,学位论文,1996年
  • 5Bogacki P,Computer Aided Design,1995年,27卷,9期,651页
  • 6Eck M. Degree reduction of Bézier curves [J]. Computer Aided Geometric Design, 1993, 10(2): 237~251
  • 7Eck M. Least square degree reduction of Bézier curves [J]. Computer-Aided Design, 1995, 27(11): 845~851
  • 8Ahn Y. Degree reduction of Bézier curves using constrained Chebyshev polynomials of the second kind [J]. Australian & New Zealand Industrial and Applied Mathematics Journal, 2003, 45(2): 195~205
  • 9Bogacki P, Weinstein S E, Xu Y. Degree reduction of Bézier curves by uniform approximation with endpoint interpolation [J]. Computer-Aided Design, 1995, 27(9): 651~661
  • 10Chen Guodong, Wang Guojin. Optimal multi-degree reduction of Bézier curves with constraints of endpoints continuity [J]. Computer Aided Geometric Design, 2002, 19(6): 365~377

共引文献12

同被引文献16

  • 1徐宗本,高勇.遗传算法过早收敛现象的特征分析及其预防[J].中国科学(E辑),1996,26(4):364-375. 被引量:99
  • 2梁秀霞,张彩明,徐琳,张爱武.L_∞范数下使用基本曲线和修正曲线的带约束Bézier曲线降阶[J].计算机辅助设计与图形学学报,2006,18(3):401-405. 被引量:6
  • 3秦开怀,吴边,关右江,葛振州.三维单纯形划分的遗传算法[J].中国科学(E辑),1997,27(1):67-74. 被引量:5
  • 4Delgado J, Pena J M,Progressive iterative approximation and bases with the fastest convergence rates[J].Computer Aided Geometric Design, 2007,24( 1 ) : 10-18.
  • 5Lu L Z, Wang G Z.Optimal multi-degree reduction of B6zier curves with G2-eontinuity[J].Computer Aided Geometric Design, 2006,23 ( 9 ) : 673-683.
  • 6Young J A, Byung G L, Yunbeom P.Constrained polynomial degree reduction in the L2-norm equals best weighted Eu- clidean approximation of B6zier coefficients[J].Computer Aided Geometric Design,2004,21(2) : 181-191.
  • 7Cai H J, Wang G J.Constrained approximation of rational B6zier curves based on a matrix expression of its end points continuity condition[J].Computer-Aided Design,2010, 42(6) :495-504.
  • 8Lu L Z, Wang G Z.Application of Chebyshev II-Bernstein basis transformations to degree reduction of B6zier curves[J]. Journal of Computational and Applied Mathematics, 2008, 221(1):52-65.
  • 9Rababah A, Lee B G, Yoo J.A simple matrix form for de- gree reduction of B6zier curves using Chebyshev-Bernstein basis transformations[J].Applied Mathematics and Computa- tion.2006. 181 (1) :310-318.
  • 10Chen Q Y, Wang G Z.A class of B6zier-like curves[J]. Computer Aided Geometric Design, 2003,20( 1 ) : 29-39.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部