期刊文献+

三角域上双变量Jacobi-Bernstein的基转换及应用 被引量:1

Transformation between Bivariate Jacobi and Bernstein Basis on Triangular Domain and its Application
在线阅读 下载PDF
导出
摘要 为了在CAGD中有效地求解三角域上Bézier曲面的最小平方逼近问题,给出了三角域上双变量Jacobi基和Bernstein基的相互转换矩阵.首先利用Bernstein基构造了三角域上的Jacobi多项式;然后利用单变量Jacobi基和Bernstein基的转换关系,给出了三角域上双变量Bernstein基与Jacobi基的相互转换矩阵.进一步,利用该矩阵得到了在加权L2范数下基于正交基的Bézier曲面最佳降多阶逼近算法,给出了具体的最佳降多阶矩阵以及该降阶逼近的可预报的误差公式. For solving least squares approximation problem simply and effectively on triangular domains in CAGD, this paper derives the matrices of transformation of the bivariate Bernstein basis form into the Jacobi basis of the same degree and vice versa. A method for constructing bivariate Jacobi-weighted orthogonal polynomials in the Bernstein form on triangular domains is formulated firstly. And then, by using connection coefficients between the univariate Bernstein and Jacobi basis, the transformation matrices between bivariate Jacobi and Bernstein basis are presented. Finally, by using the matrices, an explicit form of the multi-degree reduction matrix for Bezier surface on triangular domains with respect to Jacobi weighted L2 norm is proposed, and the error of the degree reduction is given.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2009年第10期1394-1400,共7页 Journal of Computer-Aided Design & Computer Graphics
基金 国家自然科学基金(60873111) 国家"九七三"重点基础研究发展计划项目(2004CB719400)
关键词 三角域 BERNSTEIN基 Jacobi基 转换矩阵 BÉZIER曲面 降阶 矩阵表示 triangular domain Bernstein basis Jacobi basis transformation matrix Bezier surface degree reduction matrix representation
作者简介 蔡华辉,男,1975年生,博士,主要研究方向为CAGD、计算机图形学等. 王国瑾,男,1944年生,教授,博士生导师,论文通讯作者,主要研究方向为CAGD、几何逼近等(gjwang@hzcnc.com).
  • 相关文献

参考文献15

  • 1Farin G. Curves and surfaces for CAGD: a practical guide[M]. 5th ed. San Francisco: Morgan Kaufmann Publishers, 2002.
  • 2Li Y M, Zhang X Y. Basis conversion among Bezier, Tchebyshev and Legendre [J]. Computer Aided Geometric Design, 1998, 15(6): 637-642.
  • 3Farouki R T. Legendre-Bernstein basis transformations [J]. Journal of Computational and Applied Mathematics, 2000, 119 (1): 145-160.
  • 4Rababah A. Jacobi-Bernstein basis transformation [J]. Computational Methods in Applied Mathematics, 2004, 4 (2) : 206-214.
  • 5蔡华辉,王国瑾.基于约束Jacobi基的多项式反函数逼近及应用[J].计算机辅助设计与图形学学报,2009,21(2):137-142. 被引量:3
  • 6Farouki R T, Goodman T N T, Sauer T. Construction of orthogonal bases for polynomials in Bernstein form on triangular and simplex domains [J].Computer Aided Geometric Design, 2003, 20(2): 209-230.
  • 7Koornwinder T H. Two-variable analogues of the classical orthogonai polynomials [M] //Askey R A. Theory and Application of Special Functions. New York: Academic Press, 1975:435-495.
  • 8Dunkl C F, Xu Y. Orthogonal polynomials of several variables[M]. Cambridge: Cambridge University Press, 2001.
  • 9Sauer T. Jacobi polynomials in Bernstein form [J]. Journal of Computational and Applied Mathematics, 2007, 199 (1) : 149-158.
  • 10Lewanowicz S, Wozny P. Connections between two-variable Bernstein and Jacobi polynomials on the triangle [J]. Journal of Computational and Applied Mathematics, 2006, 197(2): 520-533.

二级参考文献5

共引文献2

同被引文献9

  • 1Rababah A. Transformation of Chebyshev-Bemstein polynomials basis[J].Computational Methods in Applied Mathematics,2003,(02):608-662.
  • 2Rababah A. Jacobi-Bernstein basis transformation[J].Computational Methods in Applied Mathematics,2004,(02):206-214.
  • 3FaroukiR T. Legendre-Bemstein basis transformations[J].{H}Journal of Computational and Applied Mathematics,2000,(01):145-160.
  • 4Farouki R T,Goodman T N T,Sauer T. Construction of orthogonal bases for polynomials in Bemstein form on triangular and simplex domains[J].{H}Computer Aided Geometric Design,2003,(02):209-230.
  • 5Sauer T. Jacobi polynomials in Bernstein form[J].{H}Journal of Computational and Applied Mathematics,2007,(01):149-158.
  • 6Lewanowicz S,Woiny P. Connections between two-variable Bemstein and Jacobi polynomials on the triangle[J].{H}Journal of Computational and Applied Mathematics,2006,(02):520-523.
  • 7Farin G. Curves and surfaces for CAGD:a practical guide[M].San Francisco:Morgan Kaufmann Publishers,2002.
  • 8蔡华辉,王国瑾.基于约束Jacobi基的多项式反函数逼近及应用[J].计算机辅助设计与图形学学报,2009,21(2):137-142. 被引量:3
  • 9孙慧娟,赵小香.有关雅可比多项式一些性质的研究[J].四川理工学院学报(自然科学版),2009,22(6):37-41. 被引量:2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部