摘要
从最优化思想出发,把有理Bzier曲线的降阶问题转化为求解优化问题,并基于微粒群算法,给出有理Bzier曲线降阶的一种新方法。该方法可以实现多次降阶,且降阶后的有理Bzier曲线直接以显式给出。最后结合实例,与使用遗传算法进行有理Bzier曲线降阶的结果进行对比,实验结果表明了微粒群算法的有效性。
By means of optimization methods, degree reduction of rational Bézier curves has been transformed to an optimization problem. Based on Particle Swarm Optimization (PSO) algorithm, a new method was proposed to solve the problem of degree reduction of rational Bézier curves. By using this method, the rational Bézier curves can be reduced many times and the reduced B zier curves can be represented explicitly. The PSO algorithm was compared with genetic algorithm, and the experimental results show that PSO algorithm is more effective.
出处
《计算机应用》
CSCD
北大核心
2007年第6期1524-1526,1530,共4页
journal of Computer Applications
关键词
有理BÉZIER曲线
降阶
优化
微粒群算法
遗传算法
rational Bézier curves
degree reduction
optimization
particle swarm optimization
genetic algorithm
作者简介
江明(1978-),男,江西永修人,博士研究生,主要研究方向:微粒群算法的理论和应用研究(jming99@mails.tsinghua.edu.cn);
罗予频(1959-),男,湖南湘潭人,教授,博士生导师,博士,主要研究方向:图像处理、计算机视觉、优化算法等;
杨士元(1945-),男,上海人,教授,博士生导师,主要研究方向:电子系统和设备的测试与故障诊断、数字社区与智能家庭网络技术等.