期刊文献+

基于微粒群算法的有理Bzier曲线降阶 被引量:3

Particle swarm optimization based degree reduction of rational Bézier curves
在线阅读 下载PDF
导出
摘要 从最优化思想出发,把有理Bzier曲线的降阶问题转化为求解优化问题,并基于微粒群算法,给出有理Bzier曲线降阶的一种新方法。该方法可以实现多次降阶,且降阶后的有理Bzier曲线直接以显式给出。最后结合实例,与使用遗传算法进行有理Bzier曲线降阶的结果进行对比,实验结果表明了微粒群算法的有效性。 By means of optimization methods, degree reduction of rational Bézier curves has been transformed to an optimization problem. Based on Particle Swarm Optimization (PSO) algorithm, a new method was proposed to solve the problem of degree reduction of rational Bézier curves. By using this method, the rational Bézier curves can be reduced many times and the reduced B zier curves can be represented explicitly. The PSO algorithm was compared with genetic algorithm, and the experimental results show that PSO algorithm is more effective.
出处 《计算机应用》 CSCD 北大核心 2007年第6期1524-1526,1530,共4页 journal of Computer Applications
关键词 有理BÉZIER曲线 降阶 优化 微粒群算法 遗传算法 rational Bézier curves degree reduction optimization particle swarm optimization genetic algorithm
作者简介 江明(1978-),男,江西永修人,博士研究生,主要研究方向:微粒群算法的理论和应用研究(jming99@mails.tsinghua.edu.cn); 罗予频(1959-),男,湖南湘潭人,教授,博士生导师,博士,主要研究方向:图像处理、计算机视觉、优化算法等; 杨士元(1945-),男,上海人,教授,博士生导师,主要研究方向:电子系统和设备的测试与故障诊断、数字社区与智能家庭网络技术等.
  • 相关文献

参考文献16

  • 1FORREST AR.Interactive interpolation and approximation by Bézier curves[J].The Computer Journal,1972,15 (1):71-79.
  • 2FARIN G.Algorithms for rational Bézier curves[J].Computer Aided Design,1983,15(2):73-77.
  • 3HOSCHEK J.Approximate conversion of splines curves[J].Computer Aided Geometric Design,1987,4(1):59 -66.
  • 4HU SM,SUN JG,JIN TG,et al.Approximate degree reduction of B zier curves[J].Tsinghua Science and Technology,1998,3(2):997-1000.
  • 5WATKINS MA,WORSEY AJ.Degree reduction of Béziercurves[J].Computer Aided Design,1988,20(7):398 -405.
  • 6ECK MA.Degree reduction of Bézier curves[J].Computer Aided Geometric Design,1993,10(4):237-251.
  • 7满家巨,胡事民,雍俊海,孙家广.Bézier曲线的降阶逼近[J].清华大学学报(自然科学版),2000,40(7):117-120. 被引量:7
  • 8陈国栋,王国瑾.基于广义逆矩阵的Bézier曲线降阶逼近[J].软件学报,2001,12(3):435-439. 被引量:32
  • 9陈国栋,王国瑾.带端点插值条件的Bézier曲线降多阶逼近[J].软件学报,2000,11(9):1202-1206. 被引量:22
  • 10侯晓辉,陈堃銶.Bézier曲线的缩减[J].计算机辅助设计与图形学学报,2003,15(8):967-971. 被引量:3

二级参考文献41

  • 1徐宗本,高勇.遗传算法过早收敛现象的特征分析及其预防[J].中国科学(E辑),1996,26(4):364-375. 被引量:99
  • 2Hoschek J. Approximate conversion of spline curves [J].Computer Aided Geometric Design, 1987, 4(1) : 59--66.
  • 3Lachance M A. Chebyshev economization for parametric surface[J]. Computer Aided Geometric Design, 1988, 5(3): 195--2O8.
  • 4Lutterkort D. Polynomial degree reduction in the L2-norm equals best Euclidean [J]. Computer Aided Geometric Design,1999, 16(7): 607--612.
  • 5Kim H J. Good degree reduction of Bezier curves using Jacobi polynomials [J]. Computers & Mathematics with Applications,2000, 40(10) : 1205-- 1215.
  • 6Yong Jun-Hai. Degree reduction of B-spline curves [J].Computer Aided Geometric Design, 2001, 18(2): 117--127.
  • 7Forrest A R. Interactive interpolation and approximation by Bezier curves [J]. Computer Journal, 1972, 15(1) : 71-79.
  • 8Farin G. Algorithms for rational Bezier curves [J]. Computer-Aided Design, 1983, 15(2): 73--77.
  • 9Watkins M A, Worsey A J. Degree reduction of Bezier curves[J]. Computer-Aided Design, 1988, 20(7): 398--405.
  • 10Cheney E W. Introduction to Approximation Theory [M].New York: McGraw Hill, 1966.

共引文献59

同被引文献17

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部