摘要
本文将文献提出的非协调元方法用于二阶椭圆特征值问题,证明了最优的误差估计.并且证明了当网格充分细时,近似特征值总是比真解小.
In this paper, the nonconforming finite element method from [7] is used to discretize the elliptic eigenvalue problem. The error analysis is carried out with the optimal convergence rate. Moreover, it is shown that the approximate eigenvalue is always smaller than the exact one provided that the meshsize is small enough.
出处
《计算数学》
CSCD
北大核心
2008年第2期195-200,共6页
Mathematica Numerica Sinica
关键词
特征值
下界逼近
非协调有限元
Eigenvalue, Lower Approximation, Nonconforming Finite Element