期刊文献+

基于非协调有限元方法的特征值的下界逼近 被引量:7

LOWER APPROXIMATION OF EIGENVALUES BY THE NONCONFORMING FINITE ELEMENT METHOD
原文传递
导出
摘要 本文将文献提出的非协调元方法用于二阶椭圆特征值问题,证明了最优的误差估计.并且证明了当网格充分细时,近似特征值总是比真解小. In this paper, the nonconforming finite element method from [7] is used to discretize the elliptic eigenvalue problem. The error analysis is carried out with the optimal convergence rate. Moreover, it is shown that the approximate eigenvalue is always smaller than the exact one provided that the meshsize is small enough.
作者 李友爱
出处 《计算数学》 CSCD 北大核心 2008年第2期195-200,共6页 Mathematica Numerica Sinica
关键词 特征值 下界逼近 非协调有限元 Eigenvalue, Lower Approximation, Nonconforming Finite Element
  • 相关文献

参考文献1

二级参考文献8

  • 1I. Babuska and J.E. Osborn, Finite element-Galerkin Approximation of the Eigenvalues and Eigenvectors of Selfadjoint Problem, Math. Comp., 52 (1989), 275-297.
  • 2I. Babuska and J.E. Osborn, Eigenvalue Problems, in Handbook of Numerical Analysis,V.Ⅱ: Finite Element Methods(Part Ⅰ), Edited by P.G.Ciarlet and J.L.Lions, 1991, Elsevier.
  • 3K.J. Bathe and E.L. Wilson, Numerical methods in finite element analysis, Prentice-Hall, 1976.
  • 4Chuanmao Chen and Yunqing Huang, High Accuracy Theory of Finite Element Methods, Hunan Science Press, 1995.
  • 5L.S. Jiang and Z.Y. Pang, Finite Element and its Mathematical Foundation, People Education Press, 1979.
  • 6Hongmei Shen, The lower approximation of eigenvalue and it's relative problem, Master thesis ,Xiangtan unvi., 1999.
  • 7G.Srang and G.J.Fix, Analysis of the finite element method, Prentice-Hall, 1973.
  • 8P. Tong, T.H. Pian and L.L. Bucciarelli, Mode shapes and frequencies by the finite element method using consistent and lumped mass finite element, J. Comp. Struct, 1 (1971), 623-638.

共引文献10

同被引文献13

引证文献7

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部