期刊文献+

任意凸四边形区域上二阶椭圆特征值问题基于高阶多项式逼近的一种数值方法 被引量:1

A Numerical Method Based on Higher Order Polynomial Approximation for Second Order Elliptic Eigenvalue Problems on Arbitrary Convex Quadrilateral Domain
在线阅读 下载PDF
导出
摘要 提出了任意凸四边形区域上二阶椭圆特征值问题基于高阶多项式逼近的一种有效的数值方法。首先,利用等参变换将任意凸四边形区域上的函数转化为变[-1,1]Χ[-1,1]上的函数,并建立原问题在等参变换下的弱形式及其逼近格式。其次,利用Legendre正交多项式的性质构造逼近空间中有效的一组基函数,将逼近格式转化为基于矩阵形式的线性特征系统,从而可以通过MATLAB软件编程求解出相应的特征值。最后,一些数值算例被呈现,数值结果进一步验证了我们算法的有效性和收敛性。 An effective numerical method based on high-order polynomial approximation for second-order elliptic eigenvalue problems on arbitrary convex quadrilateral regions is proposed. Firstly, the function on any convex quadrilateral region is transformed into a function on variable by isoparametric transformation, and the weak form and approximation scheme of the original problem under isoparametric transformation are established. Secondly, a set of effective basis functions in the approximation space are constructed by using the properties of Legendre orthogonal polynomials, and the approximation format is transformed into a linear characteristic system based on matrix form, so that the corresponding eigenvalues can be solved by MATLAB software programming. Finally, some numerical examples are presented, and the numerical results further verify the effectiveness and convergence of our algorithm.
作者 郑继会
出处 《应用数学进展》 2021年第12期4201-4208,共8页 Advances in Applied Mathematics
  • 相关文献

参考文献4

二级参考文献25

  • 1I. Babuska and J.E. Osborn, Finite element-Galerkin Approximation of the Eigenvalues and Eigenvectors of Selfadjoint Problem, Math. Comp., 52 (1989), 275-297.
  • 2I. Babuska and J.E. Osborn, Eigenvalue Problems, in Handbook of Numerical Analysis,V.Ⅱ: Finite Element Methods(Part Ⅰ), Edited by P.G.Ciarlet and J.L.Lions, 1991, Elsevier.
  • 3K.J. Bathe and E.L. Wilson, Numerical methods in finite element analysis, Prentice-Hall, 1976.
  • 4Chuanmao Chen and Yunqing Huang, High Accuracy Theory of Finite Element Methods, Hunan Science Press, 1995.
  • 5L.S. Jiang and Z.Y. Pang, Finite Element and its Mathematical Foundation, People Education Press, 1979.
  • 6Hongmei Shen, The lower approximation of eigenvalue and it's relative problem, Master thesis ,Xiangtan unvi., 1999.
  • 7G.Srang and G.J.Fix, Analysis of the finite element method, Prentice-Hall, 1973.
  • 8P. Tong, T.H. Pian and L.L. Bucciarelli, Mode shapes and frequencies by the finite element method using consistent and lumped mass finite element, J. Comp. Struct, 1 (1971), 623-638.
  • 9Jinchao Xu,Aihui Zhou.Local and Parallel Finite Element Algorithms Based on Two-Grid Discretizations for Nonlinear Problems[J].Advances in Computational Mathematics.2001(4)
  • 10Adams,R.A.Sobolev spaces[]..1975

共引文献23

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部