摘要
对任意正整数n,著名的Smarandache函数S(n)定义为最小的正整数m使得n|m!.即S(n)=min{m:m∈N,n|m!).本文的主要目的是利用初等方法研究一类包含S(n)的Dirichlet级数与Riemann zeta-函数之间的关系,并得到了一个有趣的恒等式.
For any positive integer n, the famous Smarandache function S(n) is defined as the smallest positive integer m such that n|m!. That is, S(n) = min{m : m ∈ N, n|m!}. The main purpose of this paper is using the elementary methods to study the relationship between the Riemann zeta-function and one kind Dirichlet's series involving the Smarandache function, and give an interesting identity.
出处
《纯粹数学与应用数学》
CSCD
北大核心
2008年第1期41-44,共4页
Pure and Applied Mathematics
基金
国家自然科学基金(60472068)
作者简介
周焕芹(1962-),女,副教授,研究方向:基础数学.