摘要
对任意正整数n,我们定义算术函数Ω-(n)为Ω-(1)=0,当n>1,且n=p1α1.p22α…pkαk为n的标准分解式时,定义Ω-(n)=1αp1+2αp2+…+kαpk.显然这个函数是可加函数.即就是对任意正整数m及n有Ω-(m.n)=Ω-(m)+Ω-(n).本文主要目的是利用初等方法研究函数Ω-(n)的算术性质,并给出一个较强的均值公式及有趣的恒等式.
For any positive integer n,we define the arithmetical function Ω-(n) as Ω-(1)=0. If n〉1 and n=p1α1.p22α…pkαk be the factorization of n into prime powers, then we define Ω-(n)=αp1+2αp2+…+kαpk It is clear that this function is an additive arithmetical function. That is, for any positive integer m and n we have Ω-(m.n)=Ω-(m)+Ω-(n). The main purpose of this paper is using the elementary to study the arthmetical properties of Ω-(n) , and give a sharper mean value formula and identity for it.
出处
《纯粹数学与应用数学》
CSCD
北大核心
2007年第3期351-354,共4页
Pure and Applied Mathematics
基金
国家自然科学基金资助项目(10671155)
关键词
算术函数
均值公式
恒等式
arithmetical function,mean value formula, identity
作者简介
薛社教(1965-),讲师,研究方向:基础数学