期刊文献+

改进信息离散性度量方法的蛋白质二级结构预测

Prediction of Protein Secondary Structure with an Improved Measure of Information Discrepancy
在线阅读 下载PDF
导出
摘要 采用一种信息离散性度量方法对CB396数据集中的蛋白质数据进行二级结构预测,预测准确率达到72.1%.为了提高预测准确率,将FDOD算法结合PSI-BLAST进行多重序列比对,使预测准确率提高到75.6%,证明了该方法的有效性.在此基础上,利用20种疏水标度改进FDOD方法,以减小计算量.最后,结合长程作用,对预测准确性的影响因素进行了讨论. The secondary structure prediction is important in protein structure prediction since protein secondary structure is the basis of the tertiary structure. A method of information discrepancy-FDOD ( Function of Degree of Disagreement) was used to predict protein secondary structure in this work. Data were selected from the CB396 database and prediction accuracy was 72.1%. Besides, multiple alignment of PSI-BLAST was used to combine with FDOD, with the prediction accuracy increased to 75.6%. Furthermore, in order to reduce computation complexity, hydrophobic values were introduced to improve the algorithm and the impact factors of hydrophobic values. Long-range interaction is discussed in the prediction of protein secondary structure.
出处 《应用科学学报》 CAS CSCD 北大核心 2008年第2期150-154,共5页 Journal of Applied Sciences
基金 上海市重点学科建设资助项目(No.T0102)
关键词 二级结构预测 信息离散性 疏水特性 长程作用 protein secondary structure prediction, disagreement degree, hydrophobic values, long-range interaction
作者简介 通信作者:严壮志,博士,教授,博导,研究方向:生物医学图像与生物信息处理;E-mail:zzyan@shu.edu.cn
  • 相关文献

参考文献13

  • 1CHOU P Y, FASMAN G. Prediction of protein conformation [ J ]. Biochemistry, 1974 ( 13 ) : 222 - 245.
  • 2GARNIER J, OSGUTHORPE D J, ROBOSON B. Analysis of the accuracy and implications of simple methods for prediction the secondary structure of globular protein [ J ]. Molecular Biology, 1978,120( 1 ) : 97 - 120.
  • 3CRIVELLI S, ESKOW E, BADER B, LAMBERTI V, BYRD R, SCHNABEL R, HEAD-GORDON T. A physical approach to protein structure prediction [ J ]. Biophysical Journal, 2002,82( 1 ) :36 -49.
  • 4LIN Kuang, SIMOSSIS A V, TAYLOR W R, HERINGA J. A simple and fast secondary structure prediction method using hidden neural networks [ J ]. Bioinformatics, 2005, 21(2): 152 -159.
  • 5ZHANG Qidong, YOON S, WELSH W J. Improved method for predicting beta-turn using support vector machine [ J ]. Bioinformatics, 2005,21 (10) : 2370 -2374.
  • 6CHEN Hang, GU Fei, HUANG Zhengge. Improved Chou- Fasman method for protein secondary structure prediction [J]. Bioinformatics, 2006, 7(4):S14.
  • 7FANG Weiwu. The disagreement degree of multi-person judgments in additive structure [ J ]. Mathematical Social Sciences, 1994, 28(2) : 85 - 111.
  • 8JIN Lixia, TANG Huanwen FANG Weiwu. Prediction of protein structural classes by a new measure of information discrepancy[ J]. Computer Biology and Chemistry, 2003, 27 (3) : 375 - 383.
  • 9CUFF J A, BARTON G J. Application of enhanced multiple sequence alignment profiles to improve protein secondary structure prediction[ J]. Proteins, 1999,40:502 - 511.
  • 10Mount DW.生物信息学[M].北京:高等教育出版社,2003.346-348.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部