期刊文献+

基于属性模糊聚类和关联规则的锅炉异常工况分析

Analysis of Anomalous Conditions of Boilers Based on Attributive Fuzzy Clustering and Association Rules
在线阅读 下载PDF
导出
摘要 针对火电厂锅炉运行过程复杂,而且异常工况难以分析的状况,提出了一种新的分析方法。该方法融合属性模糊聚类和关联规则算法两种数据挖掘技术,利用属性模糊聚类方法建立锅炉各运行参数对类别的不确定性描述,选择出代表性分析参数;利用经典的Apriori算法和改进的关联规则找出这些参数的关系。通过2个超温的实例对该方法进行分析考核。结果表明:它不仅充分利用了电厂DCS系统存储的海量数据,而且可实现故障诊断、运行指导等,并可满足诊断的实时性要求,从而可保证锅炉乃至整个机组的安全运行。 Since operational processes of boilers, in fossil fired power plants, are complex and anomalous behaviors are hard to analyze, a new way of analysis is being suggested which amalgamates the two data mining techniques, i.e. attributive fuzzy clustering and association rule calculation. An uncertain description of all the boiler's operational parameter is obtained by the attributive fuzzy clustering method and representative parameters are selected; cognition of the selected parameters then proceeds according to association rules, improved by mutative confidence. The suggested method is being analyzed and verified by actually occassioned instances of overheating. Results indicate, that this method not only can make full use of the enormous amount of data, porform fault diagnosis, as well as serve operational guiding stored by the power plant's DCS system, but can also purposes. Moreover, because requirements of real time diagnosis are met, the method is a capable of warranting safe operation, not only of the boiler, but even of the whole set.
出处 《动力工程》 EI CSCD 北大核心 2007年第3期362-366,共5页 Power Engineering
关键词 自动控制技术 锅炉 超温 数据挖掘 属性模糊聚类 关联规则 automatic control technique boiler overheating data mining attributive fuzzy clustering association rules
作者简介 万绪财(1980-),男,山东青岛人,硕士。主要从事电站锅炉设计、开发与应用的研究。
  • 相关文献

参考文献7

二级参考文献25

  • 1刘占生,夏松波.人工神经网络在汽轮发电机组故障诊断中的应用[J].汽轮机技术,1995,37(1):18-20. 被引量:5
  • 2王耀青,刘微,刘竞.燃烧控制系统最佳风/煤比曲线在线自学习算法[J].华中理工大学学报,1996,24(3):83-87. 被引量:8
  • 3乌显塘.工业锅炉燃烧优化控制[J].自动化仪表,1988,9(6):20-23.
  • 4[2]Eemuri A T.Diagnosis of sensor bias faults[C].American Control Conference,1995,(1):460-464.
  • 5[4]Wilisky A S,A survey of design methods for failure detection in dynamic systems [J],Automatica,1976,(12):601-611.
  • 6[8]Agrawal R,Imielinski T,Swanmi A N.Mining association rules be-tween sets of items in large databases[C].Sigmod Conference,1993.
  • 7[9]Rafiei D,Mendelzon A.Similarity-based queries for time series data [C].In Proc. 1997 ACM-SIGMOD Int. Conf. Management of Data, pages 13-23,Tucson,Arizona,1997.
  • 8王耀青,刘微.在线调节风/煤比实现经济燃烧控制[J].中国电力,1997,30(2):14-19. 被引量:17
  • 9董学育.[D].东南大学,2001.
  • 10Specht D F. Probabilistic neural networks [J]. Neural Networks, 1990,1(3): 109~118.

共引文献99

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部