期刊文献+

金融波动的赋权“已实现”双幂次变差及其应用 被引量:12

Weighted Realized Bipower Variation of Financial Volatility and Its Application
在线阅读 下载PDF
导出
摘要 金融波动是金融研究中的热点问题。金融高频数据比低频数据包含了更丰富的日内收益波动信息,因此对金融高频时间序列的研究成为金融领域中备受关注的焦点。"已实现"波动是利用高频数据计算金融波动率的全新方法,目前在金融高频数据的研究中应用十分广泛,但它具有误差较大和不稳健的缺点,因此各种改进方法应运而生,其中"已实现"双幂次变差克服了"已实现"波动的不稳健的缺点。本文提出赋权"已实现"双幂次变差的概念,不但继承了"已实现"双幂次变差的稳健性,而且满足无偏性和最小方差性,通过理论证明和实证研究都表明其能够更准确的度量金融波动率。 Volatility is a hot topic in financial research. People pay more and more attention to the high frequency data in finance because it contains more volatility information of intraday return than low frequency data does. Realized volatility is a completely new method to calculate volatility of high frequency data, which is applied widely in the study of high frequency data in finance. There are many methods to improve on the realized volatility for it has shortcomings of big error and non-robustness. Among these, only the realized bipower variation overcomes the shortcoming of non-robustness. The concept of weighted realized bipower variation which is put forward in this article, is not only robust but also unbiased and efficient. The theorem pool and the demonstration study also show the same conclusion:it can measure the volatility more precisely.
出处 《中国管理科学》 CSSCI 2007年第5期9-15,共7页 Chinese Journal of Management Science
基金 国家自然科学基金资助项目(70471050)
关键词 “已实现”双幂次变差 赋权“已实现”双幂次变差 “已实现”波动 有效性 稳健性 realized bipower variation weighted realized bipower variation realized volatility efficiency robustness
作者简介 李胜歌(1980-),女(汉族),河北人,天津大学博士生,研究方向:金融波动研究.
  • 相关文献

参考文献13

  • 1樊智,张世英.金融波动性及实证研究[J].中国管理科学,2002,10(6):27-30. 被引量:10
  • 2Andersen T.G,Tim Bollerslev et,al.Exchange rate returns standardized by realized volatility are (nearly)Gaussian[J].Multinational Finance Journal,2000,4:159-179.
  • 3Andersen T.G,Tim Bollerslev.Intraday periodicity and volatility persistence in financial markets[J].Journal of Empirical Finance,1997,4:115-158.
  • 4Andersen T.G,Tim Bollerslev.Deutsche mark-dollar volatility:intraday acitivity patterns,macroeconomic announcements and longer run dependencies[J].Journal of Finance,1998,53:219-265.
  • 5徐正国,张世英.调整"已实现"波动率与GARCH及SV模型对波动的预测能力的比较研究[J].系统工程,2004,22(8):60-63. 被引量:52
  • 6Martens,M.and D.van Dijk.Measuring volatility with the realized range[R].Unpublished paper:Econometric Institute,Erasmus University,Rotterdam,2005.
  • 7Barndorff-Nielsen,Ole E.Neil Shephard.Power and bipower variation with stochastic volatility and jumps[J].Journal of Financial Econometrics,2004,2 (1):1-37.
  • 8唐勇,张世英.高频数据的加权已实现极差波动及其实证分析[J].系统工程,2006,24(8):52-57. 被引量:32
  • 9Andersen T.G.,Tim Bollerslev,et al.Modeling and forecasting realized volatility[J].Econometrica,2003,71(2):579-625.
  • 10Protter,P.,Stochastic integration and differential equations:a new approach[M].New York:Springer Verlag,1992.

二级参考文献36

  • 1LI Han-dong, ZHANG Shi-ying School of Management, Tianjin University, Tianjin 300072, China.Common Persistence and Error-Correction Mode in Conditional Variance[J].Journal of Systems Science and Systems Engineering,2001,13(3):257-264. 被引量:15
  • 2Andersen T G,Bollerslev T,Diebold F,Labys P. Exchange rate returns standardized by realized volatility are (nearly) Gaussian[J]. Multinational Finance Journal,2000,4:159~179.
  • 3Andersen T G,Bollerslev T,Diebold F,Labys P. The distribution of exchange rate volatility[J]. Journal of American Statistical Association,2001,96:42~55.
  • 4Andersen T G,Bollerslev T,Diebold F,Ebens H. The distribution of stock return volatility[J]. Journal of Financial Economics,2001,61:43~76.
  • 5Andersen T G,Bollerslev T,Diebold F,Labys P. Modelling and forecasting realized volatility[J]. Econometrica,2003, 71(2):579~625.
  • 6Blair B J,Poon S H,Tarlor S J. Forecasting S&P 100 volatility:the incremental information content of implied volatilities and high frequency index returns[J]. Journal of Econometrics,2001,105:5~26.
  • 7Andersen T G,Bollerslev T. Answering the critics:yes, ARCH models do provide good volatility forecasts[J]. International Economic Review,1998,39(4):885~905.
  • 8Andersen T G,Bollerslev T,et al. Analytic evaluation of volatility forecasts[R]. 2002.
  • 9Beran J. Maximum likelihood estimation of the differencing parameter for invertible and short and long memory autoregressive integrated moving average models[J]. Journal of the Royal Statistical Society,1995,57(4):659~672.
  • 10Hull J,White A. The pring of options on assets with stochastic volatility[J]. J.Finance,1987,42:281~300.

共引文献83

同被引文献139

引证文献12

二级引证文献59

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部