期刊文献+

加权已实现极差四次幂变差分析及其应用 被引量:11

Analysis of weighted realized range-based quadpower variation and its application
原文传递
导出
摘要 针对金融高频数而开发的极差波动估计量因能更精确地度量波动率而备受关注.根据方差有效性结合数值模拟,推导出了已实现极差多幂次变差族中最优的波动估计量,并依据无偏性和方差有效性给出了相应的加权估计量.同时将这些估计量与已实现GRACH模型相结合,并对模型进行扩展.实证表明已实现极差四幂次变差是已实现极差多幂次变差族中最优的波动估计量,加权的已实现极差四幂次变差能有效消除日历效应的影响,扩展的已实现GRACH模型在拟合和预测效果上明显优于传统的EGARCH模型. Range-based volatility aiming at financial high-frequency data has attracted more and more attention for its more accurate estimation of financial asset's volatility. The paper derives the optimal volatility estimator in the family of reMized range-based multipower variation, according to variance effi- ciency with numerical simulation and it also gives its weighted estimator, according to unbiasedness and variance efficiency. Meanwhile, the paper expands the realized GARCH model under the condition that the realized GARCH model is combined with these estimators. The empirical analyses show that realized range-based quadpower variation is the optimal volatility estimator in the family of realized range-based multipower variation, the weighted realized range-based quadpower variation does get rid of the influence of calendar effect and the expanded realized GARCH models outperform traditional EGARCH model in fit and forcasting.
作者 唐勇 刘微
出处 《系统工程理论与实践》 EI CSSCI CSCD 北大核心 2013年第11期2766-2775,共10页 Systems Engineering-Theory & Practice
基金 国家自然科学基金(71171056)
关键词 已实现极差多幂次变差 日历效应 已实现GARCH 预期不足 range-based multipower variation calendar effect realized-GARCH model expected shortfall
作者简介 唐勇(1970-),男,江苏洪泽人,副教授,博士,硕士生导师,研究方向:金融计量与风险管理; 刘微(1988-),女,福建三明人,研究生,研究方向:风险管理
  • 相关文献

参考文献18

  • 1Christensen K, Podolskij M. Realized range-based estimation of integrated variance[J]. Journal of Econometrics, 2007, 141(2): 323-349.
  • 2Martens M, Van Dijk D. Measuring volatility with the realized range[J]. Journal of Econometrics, 2007, 138(1): 181-207.
  • 3唐勇,张世英.高频数据的加权已实现极差波动及其实证分析[J].系统工程,2006,24(8):52-57. 被引量:32
  • 4唐勇,张世英.已实现波动和已实现极差波动的比较研究[J].系统工程学报,2007,22(4):437-442. 被引量:14
  • 5Christensen K, Podolskij M, Vetter M. Bias-correcting the realized range-based variance in the presence of market microstructure noise[J]. Finance and Stochastics, 2009, 13: 239-268.
  • 6Barndorff-Nielsen O E, Shephard N. Variation, jumps, market frictions and high frequency data in financial econometrics[C]// Advances in Economics and Econometrics: Theory and Applications, Ninth World Congress, 2007, 3: 328-372.
  • 7Christensen K, Podolskij M. Asymptotic theory of range-based multipower variation[J]. Journal of Financial Econometrics, 2012, 10(3): 417-456.
  • 8Hansen P R, Huang Z, Shek H. Realized GARCH: A joint model of returns and realized measures of volatility[J]. Journal of Applied Econometrics, 2012, 27(6): 877-906.
  • 9Parkinson M. The extreme value method for estimating the variance of the rate of return[J]. Journal of Business,1980, 53(1): 61-65.
  • 10李胜歌,张世英.“已实现”双幂次变差与多幂次变差的有效性分析[J].系统工程学报,2007,22(3):280-286. 被引量:18

二级参考文献65

  • 1徐正国,张世英.调整"已实现"波动率与GARCH及SV模型对波动的预测能力的比较研究[J].系统工程,2004,22(8):60-63. 被引量:52
  • 2孟卫东,杨万里.连续竞价市场个股流动性的度量方法、指标与模型[J].当代财经,2006(8):44-49. 被引量:6
  • 3唐勇,张世英.高频数据的加权已实现极差波动及其实证分析[J].系统工程,2006,24(8):52-57. 被引量:32
  • 4Andersen T G,Bollerslev T.Answering the critics:yes,ARCH models do provide good volatility forecasts[J].Internationa Economic Review,1998,39(4):885~905.
  • 5Ait-Sahalia Y,Mykland P A,Zhang L.How often to sample a continuous-time process in the presence of market microstructure noise[J].Review of Financial Studies,2005,18(2):351~416.
  • 6Christensen K,Podolskij M.Asymptotic theory for range-based estimation of integrated variance of a continuous semi-martingale[R].Aarhus School of Business,2005.
  • 7Andersen T G,Bollerslev T,et al.Exchange rate returns standardized by realized volatility are(nearly) Gaussian[J].Multinational Finance Journal,2000,4:159~179.
  • 8Andersen T G,Bollerslev T,et al.The distribution of exchange rate volatility[J].Journal of American Statistical Association,2001,96:42~55.
  • 9Andersen T G,Bollerslev T,et al.The distribution of stock return volatility[J].Journal of Financial Economics,2001,61:43~76.
  • 10Andersen T G,Bollerslev T,et al.Modelling and forecasting realized volatility[J].Econometrica,2003,71(2):579~625.

共引文献69

同被引文献65

引证文献11

二级引证文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部