期刊文献+

如何描述发展趋势的差异:潜变量混合增长模型 被引量:36

How to Abstract Developmental Variations:Latent Growth Mixed Model
在线阅读 下载PDF
导出
摘要 在追踪研究中,研究者不仅关心某一特质随时间的发展趋势,而且关注个体之间发展趋势的差异及其存在差异的原因。在总体发展同质的情形下,多层线性模型和潜变量增长曲线模型为解决这一问题提供了切实有效的方法。但是如果所研究的总体本身不同质,就需要一种能够描述总体中不同质子总体的不同发展特点的方法。该文简要介绍了一种能够描述不同群体不同发展趋势特征的统计模型——潜变量混合增长模型,并通过一个实际例子介绍了这一方法的应用过程,同时说明了潜变量混合增长模型与多层线性模型和潜变量增长曲线模型之间的关系。 Developmental research involves the identification of individual differences in change as well as understanding the process of change itself. The contemporary approach to the analysis of change, as Hierarchical Linear Model (HLM) and Latent Growth Curve Model (LGCM), has focused on growth curve modeling that explicitly considers both intraindividual change and interindividual differences in such change, but treats the data as if collected from a single population. This assumption of homogeneity in the growth parameters is often unrealistic. If heterogeneity is ignored, statistical analyses and their effects can be seriously biased. This paper presents a procedure that accounts for sample heterogeneity---Latent Growth Mixed Model (LGMM)---and their application to longitudinal data. In addition, the difference of HLM and LGMM, and the difference of LGCM and LGMM were discussed briefly.
作者 刘红云
出处 《心理科学进展》 CSSCI CSCD 北大核心 2007年第3期539-544,共6页 Advances in Psychological Science
关键词 追踪研究 潜变量混合增长模型 潜变量增长曲线模型 多层线性模型. longitudinal study, latent growth mixed model, hierarchical linear model, latent growth curve model.
作者简介 通讯作者:刘红云,E-mail:hyliu@bnu.edu.cn
  • 相关文献

参考文献9

  • 1Raudenbush, R S. Comparing personal trajectories and drawing causal inferences from longitudinal data. Annual Review of Psychology, 2000, 52:501-525.
  • 2Jedidi, K, Jagpal, H S, DeSarbo, W S. Finite-mixture structural equation models for response-based segmentation and unobserved heterogeneity. Marketing Science, 1997, 16: 39-59.
  • 3Muthen, B O. Latent variable modeling in heterogeneous populations. Psychometrika, 1989, 54:557-585.
  • 4Muthen, B O. Second-generation structural equation modeling with combination of categorical and continuous latent variables: New opportunities for latent class/latent growth modeling. In: A Collins L, Sayer A (Eds). New methods for the analysis for change. Washington D C:American Psychological Association, 2001.291-322.
  • 5Muthen, B. O. Latent variable mixture modeling. In: G A Marcoulides, R E Schumacker (Eds). New developments and techniques in structural equation modeling. Mahwah: NJ:Lawrence Erlbaum Associatres. Inc, 2001.1-33.
  • 6Najin, D S. Analyzing developmental trajectories: A semiparametdc, group-based approach. Psychological methods, 1999, 4:139-157.
  • 7Muthen, B O, Shedden, K. Finite mixture modeling with mixture outcomes using the EM algorithm. Biometrics, 1999,55:463--469.
  • 8刘红云,孟庆茂.纵向数据分析方法[J].心理科学进展,2003,11(5):586-592. 被引量:45
  • 9Muthen, L K, Muthen, B. Mplus: User's guide. Los Angeles, CA: Muthen & Muthen, 2003.235-296.

二级参考文献13

  • 1[1]Duncan T E, Duncan S C, Strycker L A. An Introduction to Latent Variable Growth Curve Modeling: Concepts, Issues, and Applications. New Jersey, London: Lawernce Erlbaum Associates, 1999. 12~65
  • 2[2]Raudenbush S W, Chan W. Growth curve analysis in accelerated longitudinal designs. Journal of Research in Crime and Delinquency, 1992, 29: 387~411
  • 3[3]J?reskog K G, S?rbom D. Lisrel 8: Structural Equation Modeling with the SIMPLIS command language. Chicago: Scientific Software International, 1993. 12~145
  • 4[4]Liang K Y, Zeger S L. Longitudinal data analysis using generalized linear models. Biometrika, 1986, 73: 13~22
  • 5[5]Arbuckle J L. AMOS for windows, analysis of moment structures Version 3.5. Chicago IL: Smallwaters, 1995. 25~75
  • 6[6]Bentler P M, Wu E. EQS structural equations program manual. Encino,CA: Multivariate software, 1995. 1~10
  • 7[7]Múthen B, Múthen J.Mplus user's guide: http://www.statmodel.com/Mplus Mplus Version 2.1.
  • 8[8]Bryk A S, Raudenbush S W. Hierarchical Linear Models: Applications and Data Analysis Methods. Newbury Park,CA: Sage Publication, 1992. 12~52
  • 9[9]Rasbash J, Browne W, Goldstein H, Yang M, Plewis I, Healy M, Woosdouse G, Draper D. A user's guide to Mlwin. London: Institute of Education, 1999. 1~225
  • 10[10]Longford N T. A fast scoring algorithm for maximum likelihood estimation in unbalanced mixed models with nested effects. Biometrika, 1987,74: 817~827

共引文献44

同被引文献780

引证文献36

二级引证文献449

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部