期刊文献+

基于Hilbert空间理论的图像知识发现 被引量:1

Knowledge Discovery of Image Based on Hilbert Space Theory
在线阅读 下载PDF
导出
摘要 最近几年,知识发现研究的进展很快。目前,在知识发现领域图像数据知识发现形成了新的研究热点。本文介绍了基于 Hilbert空间理论的图像知识发现模型 IMDFSSM,采用模式(定义为 Hilbert空间中的矢量)来定量地表征图像数据的知识表示和参与知识发现过程。然后用图像挖掘系统作为实例进行了验证,结果表明该模型对于图像数据的知识发现过程具有指导性作用。 The research of Knowledge Discovery has developed rapidly in recent year.Knowledge discovery of image data has become the research hotspot in KDD field presently,This paper introduces the image data discovery model IMDFSSM based on Hilbert Space Theory which uses pattern(defined as the vector in Hilbert Space)to represent the knowledge of image data quantificationally and participate in the knowledge discovery course,Then,it is validated by image mining system,and the results indicate that IMDFSSM can guide the knowledge discovery of image data.
出处 《计算机科学》 CSCD 北大核心 2005年第8期149-151,共3页 Computer Science
基金 国家自然科学基金(69835001) 国家教育部科技重点项目(教技司[2000]175)资助
作者简介 游福成博士,副教授,主要研究方向:知识发现。 杨炳儒教授,博士生导师,主要研究方向:推理机制与知识发现,柔性建模与集成技术。
  • 相关文献

参考文献6

  • 1Piatetsky-Shapiro G, Frawley W J. Knowledge Discovery in Databases[C]. AAAI/MIT Press,1991. 166~175.
  • 2Fayyad U M,Piatetsky-Shapiro G,Smyth P,Uthurusamy R. Advances in Knowledge Discovery and Data Mining[C]. AAA I/MIT Press, 1996. 20~32.
  • 3Fayyad, et al. eds. Advances in Knowledge Discovery and Data Mining[J] AAAI/MIT Press,1996.1~35.
  • 4[美]E W 切尼.逼近论导引[M].上海科学技术出版社,1981..
  • 5杨炳儒,王建新.KDD中双库协同机制的研究(Ⅰ)[J].中国工程科学,2002,4(4):41-51. 被引量:33
  • 6马超飞,刘建强.遥感图像多维量化关联规则挖掘[J].遥感技术与应用,2003,18(4):243-247. 被引量:19

二级参考文献13

  • 1Zaiane O R, Han J, Li Z N, et al. Multimedia-miner: A System Prototype for Multimedia Data Mining[A]. Proceedings ACM-SIGMOD Conference on Management of Data, System Demo, 1998. 581-583.
  • 2Agrawal R, Imelinski T, Swani A. Mining in Association Rules Between Sets of Items in Large Database[A]. Proceedings ACM-SIGMOD International Conference, 1993. 207-216.
  • 3Agrawal R, Srikant R. Fast Algorithm for Mining Association Rules[A]. Proceeding of 20th International Conference on VLDB, 1994. 487-499.
  • 4Srikant R, Agrawal R. Mining Quantitative Association Rules in Large Relational Tables [A]. Proceedings. 1996 ACMSIGMOD Internation Conference Management of Data, 1996.1-12.
  • 5Anand SS, BellDA, HughsJ G. EDM: A general framework for data mining based on evidence theory [J]. Data & Knowledge Eng, 1996, 18:189~223
  • 6Piatetsky-Shapiro G, Matheus C J. Knowledge discovery work-bench for exploring business databases [J]. International Journal of Intelligent Systems, 1992, 7: 675~686
  • 7Yoon J P, Kerschberg L. A frame work for knowledge discovery and evolution in databases [J]. IEEE Transactions on Knowledge and Data Eng, 1993, 5: 973~979
  • 8Yang Bingru . KD(D&K) and double-bases cooperating mechanism [J]. Journal of System Engineering and Electronics, 1999, 10(2): 48~55
  • 9Yang Bingru. Double-base cooperating mechanism in KDD [J], International Symposium on Computer,1998, 149~152
  • 10Yang Bingru. FIM and CASE for evaluation of hazard level on fuzzy language field [J]. Fuzzy Sets and System, North Holland, 1997, 95(2): 83~89

共引文献49

同被引文献37

  • 1梅涛,周荷琴,冯焕清,刘勃.基于全拼图的体育视频结构的无监督挖掘(英文)[J].中国科学技术大学学报,2005,35(2):250-257. 被引量:4
  • 2孙庆先,方涛,郭达志.图像数据挖掘中的关联规则[J].计算机工程,2006,32(5):49-51. 被引量:12
  • 3李国东,臧鸿雁,王江河,洪慧闻,刘燕玲,闵乐泉.基于CD细胞神经网络的肝脏B超图像数据挖掘[J].中国临床康复,2006,10(25):121-123. 被引量:2
  • 4袁顺波.图像挖掘的模型与技术研究[J].情报科学,2006,24(11):1732-1736. 被引量:4
  • 5Chang E, Chen Li, et al. Searching Near-replicas of Image via Clustering[C]//Proc of SPIE. Boston, MA, 1999 : 281-292.
  • 6Streilein W, et al. Fused multi-sensor image mining for feature foundation data[C]//Proceedings of the Third International Conference on Information Fusion. 2000,1:18-25.
  • 7Burl M C, et al. Mining for image content [C] //Systemics, Cybernetics and Informatics/Information System: Analysis and Synthesis. Orlando, FL, 1999.
  • 8Zaiane O R, et al. MultiMediaMiner; A System Prototype for MultiMedia Data Mining[J]. Proc. ACM SIGMOD Int. Conf. on Management of Data, 1998,27(2) : 581-583.
  • 9Burl M C, et al. Diamond Eye : A Distributed Architecture for Image Data Mining[C]//SPIE DMKD. Orlando,FL, 1999.
  • 10Zhang J, Hsu W, Lee M L. An Information-driven Framework for Image Mining[C]//12th Int. Conference on Database and Expert Systems Applications. 2001: 232-242.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部