期刊文献+

基于最小二乘支持向量机的电站锅炉空预器热点检测系统研究 被引量:11

RESEARCH ON POWER PLANT BOILER AIR PREHEATER HOT SPOTS DETECTION SYSTEM BASED ON LS-SVM
在线阅读 下载PDF
导出
摘要 回转式空气预热器是火力发电机组重要的换热设备。燃料的不完全燃烧以及低负荷或停炉后空预器内气体流速低造成散热条件变差等原因会引起空预器的再燃烧事故。论文利用最小二乘支持向量机这种新的机器学习工具,分别用两种核函数建立针对三对不同火情的判别模型,超平面参数通过交叉检验的方式确定。实验结果表明,支持向量机具有很好的分类和泛化能力。从两种核函数的 ROC 曲线可看出对于本问题选用 RBF 核函数相对于多项式核函数有更高的判别准确率。 Rotary air preheater is the important heat exchanger in power plant units. Recombustion accident can be caused by inadequacy combustion of fuel or badly heat-dispersed condition aroused by low air or gas velocity after boiler outage. In the paper, discriminant models of 3 pairs of fire status have been built based on Least Square Support Vector Machines (LS-SVM) for two kinds of kernel functions. Utilizing polynomial and RBF kernel, the hyperparameters of classifiers were tuned with cross-validation. Receiver Operating Characteristic(ROC) curve comparison shows that LS-SVM classifiers are able to learn quite well from the raw data samples. Experiment results show that SVM has good classification and generalization ability and RBF kernel function has more accurate than polynomial kernel function for this problem from the area under the ROC curve (AUC) values of two kernel functions.
出处 《中国电机工程学报》 EI CSCD 北大核心 2005年第3期147-152,共6页 Proceedings of the CSEE
基金 西安理工大学中青年科技创新计划项目资助
关键词 空预器 回转式空气预热器 再燃 停炉 低负荷 电站锅炉 换热设备 最小二乘支持向量机 机器学习 核函数 Support vector machines Least square support vector machines Air preheater Hot spots detection ROC curve
  • 相关文献

参考文献14

二级参考文献45

  • 1Jiang Lin Qu Liangsheng Chen Tao Institute of Diagnostics & Cybernetics Xi′an Jiaotong University, Xi′an, 710049, P.R.China.The Influence of Training Quality on the Performance of Neural Networks[J].International Journal of Plant Engineering and Management,1996,1(1):29-37. 被引量:1
  • 2罗发龙,李衍达.神经网络信号处理研究评述[J].电子瞭望,1993(9):5-10. 被引量:13
  • 3徐伟勇,余岳峰,孙江,吴建繁.数字图像处理技术在火焰检测上的应用[J].中国电力,1994,27(10):41-44. 被引量:58
  • 4周怀春 娄新生 肖教芳 等(Zhou Huaichun Lou Xinsheng Xiao Jiaofeng et al).炉膛火焰温度场图像处理试验研究(Experimental study on image processing of flame temperature distribution in a pilotscalefurnace)[J].中国电机工程学报,.
  • 5Liu K. Comparison of very short-term load forecasting technique[J]. IEEE Trans. Power Systems, 1996,11(2): 877-882.
  • 6Hippert H S, Pefreira C E, Souza R C. Neural network for short-term load forecasting: A review and evaluation[J].IEEE Trans. Power System. 2001,16(2): 44-54.
  • 7Muller K R, Smola A J, Ratsch G, et al.Prediction time series with support vector machines[C].In Proc of ICANN'97., Springer LNCS 1327, Bedin,1997, 999-1004.
  • 8Papadakis S E, Theocharis J B, Kiartzis S J, et al. A novel approach to short-term load forecasting using fuzzy neural net-works[J].IEEE Trans. Power Systems, 1998,13(2):480-492.
  • 9Vapnik V, Golowich S, Smola A. Support vector method for function approximation, regression estimation, and signal processing[M].Cambridge, MA, MIT Press, 1997, 281-287.
  • 10Smola A J. Regression estimation with support vector learning machines[D]. Technische Universit"at M" unchen.1996.

共引文献387

同被引文献99

引证文献11

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部